Michael Beeson's Research

Utility Link | Utility Link | Utility Link
-->

The posted input files are now all mechanically generated from a master list of theorems.

The times shown in the following table are not the times required to find the proof, but rather the maximum time allocated to Otter to find the proof. The time is shown only when it had to be longer than the default, which was often 20 seconds when hints were used and 120 seconds when hints were not used.

For more information about our methodology see the top page of this project.

Input File Proof Length Strategy Seconds Commentary
Satz3.1 Satz3.1.prf 2 $ T(a,b,b) $
Satz3.2 Satz3.2.prf 4 $ T(a,b,c) \rightarrow T(c,b,a) $
Satz3.3 Satz3.3.prf 1 $ T(a,a,b) $
Satz3.4 Satz3.4.prf 9 $ T(a,b,c) \land T(b,a,c) \rightarrow a=b $
Satz3.5a Satz3.5a.prf 4 $ T(a,b,d) \land T(b,c,d) \rightarrow T(a,b,c) $
Satz3.6a Satz3.6a.prf 4 $ T(a,b,c) \land T(a,c,d) \rightarrow T(b,c,d) $
Satz3.7a Satz3.7a.prf 8 $T(a,b,c) \land T(b,c,d) \land b\neq c\rightarrow T(a,c,d) $
Satz3.5b Satz3.5b.prf 5 $ T(a,b,d) \land T(b,c,d) \rightarrow T(a,c,d) $
Satz3.6b Satz3.6b.prf 4 $T(a,b,c) \land T(a,c,d) \rightarrow T(a,d,b) $
Satz3.7b Satz3.7b.prf 2 $ T(a,b,c) \land T(b,c,d) \land b\neq c\rightarrow T(a,b,d) $
Satz3.13a Satz3.13a.prf 1 $\alpha \neq \beta $
Satz3.13b Satz3.13b.prf 1 $ \beta \neq \gamma $
Satz3.13c Satz3.13c.prf 1 $\alpha \neq \gamma $
Satz3.14a Satz3.14a.prf 0 $ T(a,b,ext(a,b,\alpha,\gamma) $
Satz3.14b Satz3.14b.prf 3 $ b\neq ext(a,b,\alpha,\gamma) $
Satz3.17 Satz3.17.prf 8 diagram $ T(a,b,c) \land T(a_1,b_1,c) \land T(a,p,a_1) \rightarrow \exists q(T(p,q,c) \land T(b,q,b_1) $

Back to top of archive