% This file was mechanically generated % from the master list in TarskiTheorems.php. % Tarski-Szmielew's axiom system is used. % T is Tarski's B, non-strict betweenness. % E is equidistance. % Names for the axioms follow the book SST % by Schwabhäuser, Szmielew, and Tarski. % This file attempts to prove Satz3.17. set(hyper_res). set(para_into). set(para_from). set(binary_res). set(ur_res). set(order_history). assign(max_seconds,120). assign(max_mem,2000000). clear(print_kept). set(input_sos_first). set(back_sub). assign(bsub_hint_wt,-1). set(keep_hint_subsumers). assign(max_weight,20). assign(max_distinct_vars,3). assign(pick_given_ratio,4). assign(max_proofs,1). list(usable). % Following is axiom A1 E(x,y,y,x). % Following is axiom A2 -E(x,y,z,v) | -E(x,y,z2,v2) | E(z,v,z2,v2). % Following is axiom A3 -E(x,y,z,z) | x=y. % Following is axiom A4 T(x,y,ext(x,y,w,v)). E(y,ext(x,y,w,v),w,v). % Following is axiom A5 -E(x,y,x1,y1) | -E(y,z,y1,z1) | -E(x,v,x1,v1) | -E(y,v,y1,v1) | -T(x,y,z) | -T(x1,y1,z1) | x=y | E(z,v,z1,v1). % Following is axiom A6 -T(x,y,x) | x=y. % Following is axiom A7 -T(xa,xp,xc) | -T(xb,xq,xc) | T(xp,ip(xa,xp,xc,xb,xq),xb). -T(xa,xp,xc) | -T(xb,xq,xc) | T(xq,ip(xa,xp,xc,xb,xq),xa). % Following is axiom A8 -T(alpha,beta,gamma). -T(beta,gamma,alpha). -T(gamma,alpha,beta). % Following is Satz2.1 E(xa,xb,xa,xb). % Following is Satz2.2 -E(xa,xb,xc,xd) | E(xc,xd,xa,xb). % Following is Satz2.3 -E(xa,xb,xc,xd) | -E(xc,xd,xe,xf) | E(xa,xb,xe,xf). % Following is Satz2.4 -E(xa,xb,xc,xd) | E(xb,xa,xc,xd). % Following is Satz2.5 -E(xa,xb,xc,xd) | E(xa,xb,xd,xc). % Following is Satz2.8 E(xa,xa,xb,xb). % Following is Satz2.11 -T(xa,xb,xc) | -T(xa1,xb1,xc1) | -E(xa,xb,xa1,xb1) | -E(xb,xc,xb1,xc1) | E(xa,xc,xa1,xc1). % Following is Satz2.12 xq = xa | -T(xq,xa,xd) | -E(xa,xd,xb,xc) | xd = ext(xq,xa,xb,xc). % Following is Satz2.13 -E(xb,xc,xa,xa) | xb=xc. % Following is Satz2.14 -E(xa,xb,xc,xd) | E(xb,xa,xd,xc). % Following is Satz2.15 -T(xa,xb,xc) | -T(xA,xB,xC) | -E(xa,xb,xB,xC)| -E(xb,xc,xA,xB) | E(xa,xc,xA,xC). % Following is Satz3.1 T(xa,xb,xb). % Following is Satz3.2 -T(xa,xb,xc) | T(xc,xb,xa). % Following is Satz3.3 T(xa1,xa1,xb1). % Following is Satz3.4 -T(xa,xb,xc) | -T(xb,xa,xc) | xa = xb. % Following is Satz3.5a -T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xb,xc). % Following is Satz3.6a -T(xa,xb,xc) | -T(xa,xc,xd) | T(xb,xc,xd). % Following is Satz3.7a -T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xc,xd). % Following is Satz3.5b -T(xa,xb,xd) | -T(xb,xc,xd) | T(xa,xc,xd). % Following is Satz3.6b -T(xa,xb,xc) | -T(xa,xc,xd) | T(xa,xb,xd). % Following is Satz3.7b -T(xa,xb,xc) | -T(xb,xc,xd) | xb = xc | T(xa,xb,xd). % Following is Satz3.13a alpha != beta. % Following is Satz3.13b beta != gamma. % Following is Satz3.13a alpha != gamma. % Following is Satz3.14a T(xa,xb,ext(xa,xb,alpha,gamma)). % Following is Satz3.14b xb != ext(xa,xb,alpha,gamma). end_of_list. list(sos). % Following is the negated form of Satz3.17 T(a,b,c). T(a1,b1,c). T(a,p,a1). -T(p,x,c) | -T(b,x,b1). % Following is the diagram: e = ip(c,b1,a1,a,p). d = ip(c,b,a,b1,e). end_of_list. list(demodulators). ip(c,b1,a1,a,p) = e. ip(c,b,a,b1,e) = d. end_of_list.