
Lecture 9B: The Lambda Calculus

Michael Beeson



Lambda Calculus
There can’t be a total App over N. But over some other X?

◮ Just assume App is total. Amazingly, the axioms of a model
of computation are not inconsistent with this assumption!

◮ We obtain a system equivalent to the λ-calculus introduced
by Church in a 1932 publication (although discovered in 1928
when Church was 25 years old).

◮ Church use a binary App(x, y) instead of different App

functions for each number of arguments, and took λ as
primitive, rather than assuming the existence of Sm

n
functions

(or Λ). He did not write App explicitly, but just wrote xy in
place of App(x, y).

◮ The main rule in λ-calculus is

(λx t)u = t[x := u].

◮ Lower case λ is used in the λ-calculus, though technically, it is
close to Kleene’s Λ, in that it leads from indices to indices.



Currying

◮ In λ calculus, officially there is only one binary App, not one
for each number of arguments.

◮ Functions of several arguments are handled like this: x(y, z) is
defined to be xyz. This is known as “currying”, after
Church’s student Haskell Curry.

◮ Modulo this essentially trivial difference, the lambda calculus
amounts to assuming the axioms for a model of computation,
and also specifying that App is total.



Models of λ-calculus

◮ It is far from obvious that the λ-calculus has any models.

◮ If this course were longer, three or four lectures would be
devoted to the lambda calculus.

◮ The point of those lectures would be that these axioms are
consistent. That theorem is hard to prove, but very
interesting.

◮ Its first proof was purely syntactic.

◮ Natural models for the lambda calculus were not discovered
until half a century later.

◮ We won’t have time to study these things.



Fixed-point theorem in λ-calculus

Theorem (Fixed-point theorem for λ-calculus)

In the lambda calculus, for every F there exists an e such that

e = Fe.

Remark. This theorem is (of course) not true in any model of
computation over N, because the successor function has no fixed
point.

Proof. Let ω := λxF (xx). Let e := ωω. Then e is the desired
fixed point:

e = ωω

= (λxF (xx))ω

= F (ωω)

= Fe

That completes the proof.



Discussion of fixed-point theorem

It is probably this proof that inspired both the statement and proof
of Rogers’s fixed-point theorem for the Turing-computable
functions. This proof is simpler and more memorable, and given
this proof, it is believable that one might work out Rogers’s
theorem.
The fixed-point theorem for lambda calculus might well arouse the
suspicion that lambda-calculus is inconsistent, because the
fixed-point theorem implies that there is no term D in
lambda-calculus such that Dx 6= x is a theorem (for such a D has
no fixed point). Hence there cannot be a way to construct
definitions by cases in lambda calculus. Nevertheless, these are not
the deal-breaking results they might seem at first.



λ-calculus and computability
◮ There is a way to define the natural numbers (the “Church

numerals”) in λ-calculus.
◮ Using the Church numerals, we can define the concept of

λ-definable function from N to N.
◮ The second important theorem about the lambda-calculus is

that Kleene-Turing model of computability is embeddable in
the lambda calculus, i.e., there is an App-preserving map from
the Turing model into (but not onto) any model of the
lambda-calculus.

◮ Every Turing-computable function is defined by a λ-term and,
as it turns out, vice-versa.

◮ Thus the λ-definable functions turn out to be the same as the
Turing computable functions, which as we have seen are the
same as the partial recursive functions.

◮ The original “Church’s thesis” was that every intuitively
computable function is λ-definable.

◮ As a curious historical note, Gödel did not believe it until he
learned about Turing machines.


