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Theories with foundational intent

Last time we discussed theories intended to have many models.
There is another kind of logical theory, completely different in
purpose. Namely:
Theories meant to characterize the fundamental structures of
mathematics.
Here we list a few of these theories:

◮ Peano Arithmetic PA

◮ Zermelo Set Theory Z

◮ Zermelo-Frankel Set Theory ZF

◮ Russell and Whitehead’s theory PM from Principia

Mathematica

We start with Peano arithmetic PA.



Peano’s axioms according to mathematicians
The point of Peano’s axioms is to provide a definition, or perhaps
you prefer the word “characterization”, of the set of natural
numbers N and the fundamental operations of addition and
multiplication. Peano recognized that the most elementary
operation on the natural numbers is “adding one”, and he
introduced the “successor” operation that takes x to the next
natural number after x, which is denoted by s(x) or by x′. Peano’s
axioms are:

◮ 0 is a natural number, and if x is a natural number so is x′.

◮ The natural numbers are closed under successor

◮ Successor is one-to-one, and 0 is not the successor of any
natural number

◮ N is contained in every set that contains 0 and is closed under
successor.

Addition and multiplication are defined recursively by
a+ 0 = a and a+ b′ = (a+ b)′

a · 0 = 0 and a · b′ = a · b+ a



Induction

The “induction axiom” is this one:
N is contained in every set that contains 0 and is closed under
successor.
This axiom can be described as “N is the least set containing 0
and closed under successor”. It can also be expressed as “N is the
intersection of all sets containing 0 and closed under successor”.
In class I will clarify its relation to the principle of mathematical
induction that you learned in your mathematics classes.



Peano’s success

Theorem
Up to isomorphism, there is exactly one model of Peano’s axioms

Proof Sketch. Given a model M of Peano’s axioms, an “initial
segment up to n” is a subset Y of M containing 0, and containing
n, and containing the successor of every element of Y but n. We
consider functions mapping an initial segment of one model M
onto initial segments of a second model N , and preserving
successor. For each n in M , there is exactly one such function, as
we see by considering the set of N for which this is true. That set
contains 0 and is closed under successor. Then the union of such
functions is a function ϕ mapping M into N , and closed under
successor. The range of ϕ is a set containing the zero of N and
closed under the successor function of N , so by the induction
axiom, N is contained in the range of ϕ, making ϕ an isomorphism
between M and N .
Thus Peano succeeded in his effort to characterize the natural
numbers uniquely by simple axioms.



Induction and sets and FOL

As stated the induction axiom refers to arbitrary sets, since it says
N is a subset of ANY set containing 0 and closed under successor.

◮ Then it isn’t a first-order statement, unless the language has
variables for sets and a predicate for membership.

◮ Does it make sense to define numbers in terms of sets?
Numbers are more fundamental than sets, aren’t they? We
will leave this question aside and stick to questions with more
precise answers.



Language of Peano Arithmetic

The theory called PA is a first-order theory, a kind of
“approximation” to Peano’s axioms.

The intended model of PA is the natural numbers N (which are
0, 1, 2, . . .), together with the usual operations of addition and
multiplication, and the operation of successor. The successor of x
is the next integer after x, written x′.
Correspondingly, the language has

◮ one sort of variables (“for the numbers”),

◮ two binary function symbols + and ·,

◮ and one unary function symbol for successor.

◮ There is just one constant symbol, 0

◮ The language has a binary predicate x = y



Conventions about the language of PA

◮ Postfix notation x′ is, in most books, not the official notation,
which is something like s(x) or succ(x). When you see x′,
that is usually an “abbreviation” for the “official” formula.

◮ Of course it is a technicality: one can write the rules of FOL
to permit postfix notation if desired.

◮ This is similar to the convention that we omit parentheses
that seem superfluous or confusing to the human eye, even if
they are officially required.

◮ Similarly, infix notation for + and · is customary, as is the
complete omission of the symbol for multiplication.

◮ a 6= b abbreviates ¬(a = b).



Some Axioms of PA

◮ a′ = b′⊃a = b (Successor is one-to-one)

◮ a′ 6= 0 (Successor never takes the value 0)

◮ a+ 0 = a and a+ b′ = (a+ b)′

◮ a · 0 = 0 and a · b′ = a · b+ a

Kleene (page 82) includes some other axioms that would be
automatically part of a theory in “FOL with equality”. In class I
will review the difference between FOL with equality and without.
Kleene’s official version of PA has the symbol for = but not all of
the equality axioms, because the rest can be proved.



The induction schema

A “schema” is an infinite family of formulas matching a particular
form. The “induction schema” is

(A(0) ∧ ∀x (A(x)⊃A(x′))⊃∀z A(z)

Here A can be any formula in the language of PA.
The first-order theory PA has for its axioms, those on the previous
slide, plus the induction schema.



PA is a first-order theory

Its axioms are all (informally) consequences of Peano’s
(set-theoretical) axioms, if we believe the “arithmetic
comprehension axiom”, according to which,
{x : φ(x)} exists for every formula φ in the language of PA.
The phrase “arithmetical formula” is used as a synonym for
“formula of PA.”



Peano’s characterization theorem fails for PA
By n̄, we mean the term 0 with n successor symbols, so for
example 2̄ is 0′′ and 4̄ is 0′′′′.
Let us add a new constant to the language of PA, say c.
Let us also add the axioms c 6= 0 and c 6= n̄ for n = 1, 2, . . ..
Call this theory T .

◮ Any finite subset of T is consistent, by interpreting c as a
large-enough integer, larger than any of the n occurring in
axioms c 6= n̄ in the finite subset of T .

◮ Therefore by the compactness theorem, T is consistent.

◮ Therefore by the completeness theorem, T has a model M .

◮ That model is not isomorphic to N.

To prove this last claim, suppose that ϕ is an isomorphism from M

to N. Then ϕ takes the numerals of M (the elements interpreting
the terms n̄) onto the corresponding numerals of M . Let C be the
member of M interpreting c. then ϕ(C) cannot be equal to a
numeral of N. But every element of N is a numeral of N,
contradiction.



Two kinds of theories? No!

We said there are two kinds of theories:

◮ Those meant to have many models, such as group theory.

◮ Those meant to characterize a fundamental structure, such as
N or the universe of sets.

But as we have seen, the latter goal cannot really be accomplished.
A first-order theory ALWAYS has many models (if it has any
infinite models).

◮ This is a consequence of the completeness theorem and the
fact that proofs are finite (have only a finite number of
symbols).

◮ There is no getting around it.

◮ There is only ONE kind of theory after all: the kind with
many different models.

◮ This is the ultimate source of the difficulties further elaborated
in the incompleteness theorems we will study in this course.



Zermelo Set Theory

Mathematicians are taught that all mathematics, or at least all
known mathematics, can be derived from the basic axioms of set
theory. Let’s take a look at these axioms.

◮ The language is simple: just one binary relation x ∈ y for set
membership.

◮ Only one sort of objects: everything is a set.

◮ Two sets are equal if they have the same elements (axiom of
extensionality):

(∀x(x ∈ a ≡ x ∈ b))⊃a = b.

◮ For simplicity, introduce a constant φ for the empty set.

◮ a binary function {x, y} for the set whose members are x and
y.

◮ {x} abbreviates {x, x}.



Separation

◮ The separation axiom schema says, for each formula A(x)
not containing a,

∃z∀x (x ∈ z ≡ x ∈ a ∧A(x)).

That set z is abbreviated

{x ∈ a : A(x)}.

◮ Because of Russell’s paradox we can’t omit the part about
x ∈ a.



Set Existence axioms

◮ the Axiom of the Union says that for every set x, there is a
set containing all the elements of the elements of x. Thus if
x = {A,B} then the set of elements of elements of x is
A ∪B, but more generally, x could be an infinite set.

◮ the Axiom of the Power Set says that for every set x, the set
of all subsets of x exists.

◮ A copy of the natural numbers can be constructed as follows:

0 = φ

n′ = n ∪ {n}

◮ The Axiom of Infinity says there exists a set containing φ and
closed under that successor operation. (Zermelo’s original
axioms used {a} for the successor of a but nowadays everyone
uses the definition given here.)



Cantor’s theorem in Zermelo

◮ Ordered pairs can be defined, for example

〈a, b〉 = {{a}, {a, b}}

◮ ω is the set of set-theoretic “integers”.

◮ A sequence f is a set of ordered pairs of the form 〈n, x〉 such
that

〈n, x〉 ∈ f ∧ 〈n, y〉 ∈ f⊃x = y

∀n ∈ ω∃y (〈x, y ∈ f)

◮ A set is countable if it is the range of a sequence

◮ The power set of ω is not countable



Skolem’s paradox

◮ Zermelo set theory can prove there is an uncountable set.

◮ But by the Löwenheim-Skolem theorem, Zermelo set theory
has a countable model M.

◮ Then the countable model M contains an uncountable set??

How can we resolve this “paradox”?



Resolution of Skolem’s paradox

Let M be the countable model. Let Z be the element of M that
plays the role of the power set of ω.

◮ Not every one of the subsets of ω is represented in the model,
which contains only countably many subsets of ω.

◮ But also, the sequence that enumerates the elements of Z is
not a member of M.

◮ Although Z is (in fact) countable, it is not countable by
means of any sequence represented in M.

◮ Therefore, it satisfies the formula that says it is uncountable.

The contradiction is resolved by distinguishing between
“countable” and “countable in M”, which means that M satisfies
the formula expressing countability.



Nonstandard models of set theory

We can use the completeness theorem with Zermelo set theory just
as well as we did with PA.

◮ In the context of set theory, n̄ is a term denoting the integer
n built up from the set-theoretic successor function.

◮ Add a new constant c and the axioms c ∈ ω and c 6= n̄.

◮ Every finite subset of this theory is consistent.

◮ By the completeness theorem it has a model


