
Lecture 15

The Second Incompleteness Theorem

Michael Beeson



The Second Incompleteness Theorem

◮ Let ConPA be the formula

∀k¬Prf(k, p0̄ = 1̄q)

◮ Then ConPA expresses the consistency of PA.

◮ The second incompleteness theorem is this:
PA 6⊢ ConPA

◮ That is, PA does not prove its own consistency.



Death knell for Hilbert’s program

Hilbert’s program, developed by Hilbert in the 1920s, called for

◮ Dividing mathematics into the “finitistic part” and the
“infinitistic part”.

◮ The finitistic part should use only completely unquestionable
principles, e.g. primitive recursion and quantifier-free
induction.

◮ The consistency of the infinitistic part should be proved in the
finitistic part.

◮ That would establish that it is “safe” to use infinitistic
methods in mathematics.

◮ But Gödel’s second incompleteness theorem showed that one
cannot even prove the consistency of the finitistic part, let
alone the consistency of the infinitistic part, using only
finitistic methods.



First incompleteness theorem reconsidered

Kleene (bottom of p. 208) states the theorem this way:

If PA is (simply) consistent then neither ⊢ Aq(q̄) nor ⊢ ¬Aq(q̄).
Here Aq(q̄) is the Rosser sentence that says “For every proof of
me, there’s a shorter proof of my negation.” In Kleene’s notation,
Aq is the formula with Gödel number q, and here q is a particular
integer defined on p. 208.

Why does Kleene put in the hypotheses about consistency?

◮ PA is consistent, so these hypothesis are superfluous.

◮ The reason he puts it in anyway: he has in mind to formalize
the theorem in PA, where (as it turns out) the hypothesis
ConPA is not provable, so it must be stated explicitly in a
version that we hope to prove in PA.



Formalizing the First Incompleteness Theorem

We will formalize the statement of
If PA is (simply) consistent then neither ⊢ Aq(q̄) nor ⊢ ¬Aq(q̄).

ConPA ⊃ ∀k (¬Prf(k, Subst(Num(q), pxq, q)

∧¬Prf(k,Neg(Subst(Num(q), pxq, q))))

◮ Technically we should use formulas representing Subst and
Num.

◮ The function Neg produces the Gödel number of ¬E from
pEq.

◮ x is a certain variable, first in the list of variables.

◮ This shows that the theorem can at least be expressed in PA.



Proving the second incompleteness theorem

Suppose we could formalize the proof of the first incompleteness
theorem. Then

⊢ ConPA ⊃ ∀k (¬Prf(k, Subst(Num(q), pxq, q)

∧¬Prf(k,Neg(Subst(Num(q), pxq, q))))

Now suppose, for proof by contradiction, that ⊢ ConPA. Then

⊢ ∀k (¬Prf(k, Subst(Num(q), pxq, q)

∧¬Prf(k,Neg(Subst(Num(q), pxq, q))))

Then we argue in PA to prove Aq(q̄) as follows: it suffices to show
that for every proof of Aq(q̄) there’s a shorter proof of ¬Aq(q̄).
But there is no proof of ¬Aq(q̄); so that proves Aq(q̄). That
contradiction proves the second incompleteness theorem.



Formalization is difficult

The proof then comes down to going through the proof of the first
incompleteness theorem, and formalizing every step in PA.

◮ We referred to many syntactic objects; these now must be
mentioned by Gödel number.

◮ Proofs by induction on the complexity of terms or formulas
now become proofs by mathematical induction in PA.

◮ We need course-of-values induction: if something is true for
all numbers less than k implies it’s true for k, then it holds for
all numbers. (You showed in an exercise how to prove this in
PA.)

◮ All the things we prove by induction need to be expressible by
arithmetical formulas.

◮ We saw that “every theorem of PA is true” is not so
expressible. That shows that the usual proof that PA is
consistent is not directly formalizable.



Remarks

◮ Formalizing the proof in PA requires much more than what
we did when we checked what conditions on a theory T were
needed for the first incompleteness theorem to hold.

◮ Then we only had to check that x < y, cutoff division,
remainder, and β are representable.

◮ For example we did not need to formalize the Chinese
remainder theorem or the main properties of β.

◮ We did not even need to prove that rem and β are total
functions.

◮ That’s why we could get by with the tiny theory RA.

◮ But we may well need more for formalizing the proof.



Formalizing a metamathematical proof
Consider, for example, the theorem that for closed terms t, if
V al(t) = m then ⊢ t = m̄.

The following predicates and functions are primitive recursive:

◮ Term(x), true when x is the Gödel number of a term.

◮ ClosedTerm(x), true when x is the Gödel number of a term
with no free variables.

◮ functor, arity, arg1, and arg2, considered as defined on
Gödel numbers of terms.

◮ V (x), the value of the closed term whose Gödel number is x.

◮ Since arg1 and arg2 are decreasing functions, V is defined by
course-of-values recursion. For example if functor(x) = 43
(43 is ascii for +) then
V al(x) = V al(arg1(x)) + V al(arg2(x)).

◮ So V al(x) is defined by cases on functor(x), with recursive
calls to V al at smaller arguments, grounded by V al(48) = 0
(48 is ascii for zero.)



Formalizing that closed terms are provable equal to their

values

◮ Since V al is primitive recursive, it is represented by a formula
V .

◮ Given the Gödel numbers u and v of terms α and β, we can
construct the Gödel number eq(u, v) of the term α = β.

◮ The function eq is also primitive recursive.

◮ Now the theorem we are trying to formalize is

ClosedTerm(x) ⊃ ∃k,m (V (x,m)∧Prf(k, eq(x,Num(m))))

because, if x is the Gödel number of a closed term t, V (x,m)
says m is the value of term t, and eq(x,Num(m)) is the
Gödel number of the formula t = m̄.



A sample formalized lemma

In the course of proving that closed terms are provably equal to
their values, we need to formalize a proof of

⊢ ᾱ+ β̄ = α+ β.

Formally that becomes

∃kPrf(k, eq(sum(Num(a), Num(b)), Num(a + b)))

where sum constructs the Gödel number of α+ β given Gödel
numbers of α and β.

◮ We proved that lemma by induction on β. So, the proof can
be formalized in PA.

◮ But even that would be a long proof. Remember how long the
proof of 2̄ + 2̄ = 4̄ turned out to be.



Summary of the lecture so far

◮ We formalized the statement of the first incompleteness
theorem.

◮ We showed that if the first incompleteness theorem can be
proved in PA, that implies the second incompleteness
theorem.

◮ It seems likely that the proof can be formalized, but to
achieve certainty would require exhibiting and checking a very
long formal proof.

◮ Even if that could be done, it would still be good to have a
shorter proof.

◮ Therefore we wish to isolate a few (three as it turns out)
simple properties such that, if we verify those three properties,
the second incompleteness theorem follows.



What is needed for the Second Incompleteness Theorem?

◮ We specify conditions on the formula PrT that represents the
provability predicate of a theory T , sufficient to guarantee
that the second incompleteness theorem holds for T .

◮ Such conditions were first written down by Hilbert-Bernays in
their 1939 textbook. The conditions were simplified by the
Dutch logician Löb in a 1955 publication.

◮ So now, those conditions D1, D2, and D3 are known by all
three names. Wikipedia omits Löb’s name, but the Stanford
Encyclopedia of Philosophy gets it right, as do some other
books.

◮ Kleene’s 1952 book was pre-Löb, and he states the Second
Incompleteness Theorem, but refers to Hilbert-Bernays for the
proof for “a slightly different system” than PA.



The Hilbert-Bernays-Lob provability conditions

Let Pr(x) be ∃kPrfT (k, x), i.e. “x is the Gödel number of a
theorem of T .” We write Pr(x) instead of PrT (x) just for brevity.
Let implies(x, y) produce the Gödel number of A ⊃ B from Gödel
numbers x and y of A and B.

Hilbert and Bernays showed that the second incompleteness
theorem holds for any recursively axiomatizable theory T that
represents satisfies the conditions for the first incompleteness
theorem, plus the following. We drop the numeral overlines over
Gödel numbers for simplicity.

◮ (D1) if T ⊢ φ then T ⊢ Pr(pφq).
“provable implies provably provable.”

◮ (D2) T ⊢ Pr(pφq) ⊃ Pr(p Pr(pφq)q)
(This is just the formalization of the first condition.)

◮ (D3) T ⊢ Pr(pφ ⊃ ψq) ∧ Pr(pφq) ⊃ Pr(pψq)



A lemma using D1-D3

Suppose ⊢ A ≡ B. Then ⊢ Pr(pAq) ≡ Pr(pBq).

◮ It suffices to prove it with ⊃ instead of ≡.

◮ Suppose ⊢ A ⊃ B. Then by D1, ⊢ Pr(pA ⊃ Bq).

◮ Then by D3, ⊢ Pr(pAq) ⊃ Pr(pBq).

◮ QED



Löb’s theorem

Löb used his conditions D1-D3 to answer the question (which you
were asked to think about in a homework exercise) about the fixed
points of Pr. His theorem shows that the only fixed points are the
theorems of T .

Theorem (Löb)

If T ⊢ Pr(pψq) ⊃ ψ then T ⊢ ψ.

◮ This theorem might seem like just a curiosity, but we will see
below that it quickly implies the Second Incompleteness
Theorem.

◮ That is how we prove that D1-D3 imply the Second
Incompleteness Theorem.



Proof of Löb’s theorem
Suppose T ⊢ Pr(pψq) ⊃ ψ. We must show T ⊢ ψ. Choose φ by
the self-reference lemma so that

T ⊢ φ ≡ (Pr(pφq) ⊃ ψ).

⊢ Pr(pφq) ≡ Pr(p Pr(pφq) ⊃ ψq) by the lemma

Now ⊢ Pr(p Pr(pφq) ⊃ ψq) ∧ Pr(p Pr(pφq)q) ⊃ Pr(pψq)
is an instance of D3. And Pr(pφq) provably implies both conjuncts
on the left. Therefore

⊢ Pr(pφq) ⊃ Pr(pψq).

But at the top of the slide, we assumed ⊢ Pr(pψq) ⊃ ψ. That
gives us

⊢ Pr(pφq) ⊃ ψ.

But then by the defining property of φ we have ⊢ φ. Hence by D1
we have ⊢ Pr(pφq). But since ⊢ Pr(pφq) ⊃ ψ, by D3 we have
⊢ ψ. That completes the proof.



Löb’s theorem implies the Second Incompleteness Theorem

All we have to do is put 0 = 1̄ in for the formula in Löb’s theorem,
and the Second Incompleteness Theorem drops out.

This observation was made by Kreisel in 1965; I do not know if he
was the first to observe it. Let ⊥ abbreviate p0 = 1̄q, so ConT is
provably equivalent to ¬Pr(⊥). Then

◮ If 0 = 1̄ is not provable, then by Löb’s theorem,
Pr(⊥) ⊃ 0 = 1̄ is not provable.

◮ But A ⊃ 0 = 1̄ is provably equivalent to ¬A.

◮ Hence, if 0 = 1̄ is not provable, then ¬Pr(⊥) is not provable.

◮ That is, if 0 = 1̄ is not provable, then ConT is not provable.

◮ That is, if T is consistent, then T does not prove ConT .

◮ That is the Second Incompleteness Theorem.



Verification of D1 for recursive extensions T of PA

◮ D1 is “provable implies provably provable”

◮ This is a special case of the fact that every true Σ0

1
sentence

is provable.

◮ You proved this in an exercise.



Verification of D3

D3 is easier to verify than D2, so we do it first.

T ⊢ Pr(pφ ⊃ ψq) ∧ Pr(pφq) ⊃ Pr(pψq)

Replacing Pr(y) by ∃xPrf(x, y) this becomes

T ⊢ Prf(x, pφ ⊃ ψq) ∧ Prf(z, pφq) ⊃ ∃wPrf(w, pψq).

Since modus ponens is one of the rules of inference, there will be a
primitive recursive function mp that gets a Gödel number of a
proof of ψ from Gödel numbers of proofs of φ ⊃ ψ and φ. So we
just need to show

T ⊢ Prf(x, pφ ⊃ ψq) ∧ Prf(z, pφq) ⊃ Prf(mp(x, z), pψq).

In other words, we need to show that the formula representing the
proof predicate satisfies its defining recursion equations.



Verification of D2
D2 is the formalization of D1:

T ⊢ Pr(pφq) ⊃ Pr(p Pr(pφq)q)

Putting in the definition of Pr(y) as ∃xPrf(x, y), this amounts to

T ⊢ Prf(x, pφq) ⊃ ∃zPrf(z, p Pr(pφq)q).

◮ This says that within T , proofs (encoded by Gödel number)
can be verified to be proofs.

◮ We need to tell how to find z from x: given a proof of φ, how
do we convert it to a proof of Pr(pφq)?

◮ We need to define a primitive recursive function F (“F for
formalize”) such that

T ⊢ Prf(x, pφq) ⊃ Prf(F (x), p Pr(pφq)q).

◮ This we could prove in T by course of values induction on x,
once F is defined.



Verification of D2 continued

Working on

T ⊢ Prf(x, pφq) ⊃ Prf(F (x), p Pr(pφq)q).

◮ For example, one of the equations for F says that if the last
step in proof x was modus ponens, then
F (x) = mp(F (arg1(x)), F (arg2(x))).

◮ so if x is a proof of B by modus ponens from A ⊃ B and A,
then arg1(x) is a proof of A ⊃ B, and arg2(x) is a proof of
A, so by induction hypothesis, F (arg1(x)) is a proof of
Pr(pA ⊃ Bq) and F (arg2(x)) is a proof of Pr(pAq), so
F (x) = mp(F (arg1(x)), F (arg2(x))) is a proof of Pr(pBq),
by the defining equation of mp.



Verification of D2 continued

◮ There is a similar case for each rule of inference

◮ The “stopping cases” for F are when x is a one-step proof by
an axiom.

◮ The induction step says that within T , one step of a proof (as
encoded by Gödel numbers) does follow the rules for proofs.

◮ That is, the formula representing the proof predicate and the
function F are related, by certain recursion relations.

◮ The only way this could fail is a “bug” in the definition of F
or the definition of the Prf predicate. The condition D2
expresses a fundamental property of the formula Prf that it
must satisfy in order to be what we think of as a
“formalization of the proof predicate.”



What we needed to verify D1-D3

◮ The formula representing the proof predicate satisfies its
defining recursion equations.

◮ Proofs can be verified to be proofs.

◮ Both those are proved by course-of-values induction.

◮ So, we need a couple of simple instances of course-of-values
induction plus RA.

◮ It seems nobody has isolated an exactly “minimal” system,
partly out of concern that if you take too few axioms away,
you can’t really ensure that your Prf predicate represents what
you have in mind by proofs, so maybe the formula you have
written down doesn’t even adequately reflect the second
incompleteness theorem.

◮ The interest of the second incompleteness theorem is that it
applies to the strongest theories we know. It’s not so
interesting exactly how weak a theory it will still work for.



What about a computer-checked proof?

◮ There does exist a computer-checked proof of the First
Incompleteness Theorem (by Natarajan Shankar in the
proof-checker PVS), but for technical reasons it can’t be
automatically converted to a proof in PA.

◮ So we don’t yet have a computer-checked proof of the Second
Incompleteness Theorem.

◮ That may change soon: I heard a rumor that one will be
announced this summer in Vienna, where the Summer of
Logic will take place.


