
ASSIGNMENT 4: RECURSIONS THAT GO BEYOND PRIMITIVE RECURSION

MICHAEL BEESON

Ackermann’s function A(m,n) is defined for nonnegative integers m and n by the recur-
sion equations

A(m,n) =











n + 1 if m = 0

A(m − 1, 1) if m > 0 and n = 0

A(m − 1, A(m,n − 1)) if m > 0 and n > 0.

1. Prove that this function is well-defined, i.e., the computation implied by these equa-
tions always terminates.

2. What is the largest value of Ackermann’s function that you are able to compute with
a reasonable amount of effort? You are allowed to use a computer program if you wish, but
it is not required. It is not important to spend much time and energy on this, because the
only point of the exercise is to get a feel for the extremely rapid growth of this function.

3. The iteration of addition is multiplication, in the sense that adding a to itself b times
is a× b. The iteration of multiplication is exponentiation ab, which we can also write a ↑ b.
The iteration of exponentiation is sometimes indicated by a tower of exponents, but it can
be written as a ↑↑ b. Iterating this function we get a ↑↑↑ b, and so on; Knuth introduced
the notation a ↑n b. Look at the function ξ defined on page 272 of the textbook, and
show that the functions mentioned earlier in the problem arise from ξ by fixing the first
argument of ξ to be 0 for addition, 1 for multiplication, 2 for exponentiation, etc. That is, ξ

is essentially the same as Knuth’s iterated uparrow function. (ξ is the original Ackermann’s
function; the function A above is a modified version due to Rosza Péter.)

4. Compare the definition to the function ξ defined on p. 272 of the textbook. Express
the function defined there in terms of Ackermann’s function. If you need a hint, look at
the table of values of A in the Wikipedia article about Ackermann’s function.

5. Show that any primitive recursive function f(x) grows no faster than 2 ↑n x for some
n (here n depends on f but not on x).

6. Use the result of problem 5 to prove that ξ is not primitive recursive, and the result
of problem 4 to prove that the function A of problem 1 is not primitive recursive.

7. A functional is a function F that can take (in some argument places) a function
from numbers to numbers, and possibly can take numbers in other argument places. For
example, F (f) = f(5) defines a functional. If we consider functionals defined by the same

1

http://en.wikipedia.org/wiki/Ackermann_function


2 MICHAEL BEESON

equations as for primitive recursive functions, but allowing function arguments, we get the
“primitive recursive functionals of type 1”. Show that Ackermann’s function is included.
(Hint, see problem 3.) (We include in this class also functions that only take numbers for
arguments.)

8. Show that the class of primitive recursive functionals of type 1 still does not include
all the computable functions from natural numbers to natural numbers.


