ASSIGNMENT 10: PEANO ARITHMETIC

MICHAEL BEESON

The axioms of Peano Arithmetic (**PA**) are listed on page 82 of Kleene.

1. Explain the justification given for line 7 of the example proof on page 84. Here "explain" means to indicate the matching of specific formulas in line 7 to the variables written with capital letters on page 82.

2. Exhibit a proof in **PA** of the formula 2 + 2 = 4. Here 2 is 0" and 4 is 0"".

3. Prove the theorem given in lecture, that if k = Val(t) for a closed term t, then $\vdash t = \bar{k}$. *Hint*: Use induction on the complexity of the term t. You will see that the axioms of **PA** are very convenient for this proof.

4. The "induction rule" says that if A(0) and $A(x) \supset A(x')$ are provable, then A(x) is provable. Show that the induction rule is valid for **PA**. (Hint: this is sketched on p. 181, but I want to see more detail.)

5. Let \mathbf{PA}^* be defined by removing the induction axiom (Axiom 13, p. 82) and replacing it with the induction rule (problem 3, or p. 181). Show that the induction axiom is provable in \mathbf{PA}^* , so the two systems actually have the same theorems.

6. Course-of-values induction. See paragraph 2, page 193 of the textbook. Show that every instance of course-of-values induction is a theorem of **PA**. The proof is sketched in two lines on p. 193, so all you have to do is flesh that sketch out, providing a few more details.

7. Prove that a predicate is representable if and only if its representing function is representable.

8. Show that $\mathbf{PA} \vdash \forall x \ (x \neq 0 \supset \exists u \ (u' = x))$. *Hint*: The proof will have to use an instance of the mathematical induction schema in **PA**. Observe the difference between using induction formally (within **PA**) and using it informally.

9. Recall that x < y is an abbreviation for $\exists z(z' + x = y)$. Show that **PA** proves this is equivalent to $\exists z(x + z' = y)$.

10. Using the result of problem 9, show that for each numeral \bar{n} ,

$$\mathbf{PA} \vdash x < \bar{n}'' \equiv x < \bar{n}' \lor x = \bar{n}'.$$

Hint: Replace the formulas involving < by their true meanings involving \exists . Then prove both directions of the equivalence (informally, it is not required to write out an official formal proof). Then say "this proof can be done in **PA**" and wave your hands.

MICHAEL BEESON

11. Show that for each numeral \bar{n} ,

$$\mathbf{PA} \vdash x < \bar{n} \equiv x = 0 \lor x = \bar{1} \lor \ldots \lor x = \bar{n}.$$

Hint: Proceed by informal induction on n. Use problem 10 for the induction step. Notice the difference between using induction formally (within **PA**) and informally, as here.

12. Show that the theorem in problem 11 can be proved in **PA** without induction (for each numeral \bar{n}) using Kleene's definition of x < y, if we assume the result of problem 8 (every nonzero integer is a successor). In other words, we need induction only for that result. Hint: Fixing n, argue in **PA** as follows. If x = 0, we're done. So x is a successor, x = y'. If y = 0 then $x = \bar{1}$ and we're done. And so on, for n steps, each step decreasing the numeral on the right of the equation, until it comes to zero. You can find a rather formal version of this on p. 198 of Kleene.