Sindbad~EG File Manager
PRABCD
BEAGB
BECHD
BEEGH
BEGHF
OSAGHD
COAGB defn:collinear
COCHD defn:collinear
COEGH defn:collinear
ANBEARD+COGHR+NCGHA defn:oppositeside
BEARD
COGHR
NCGHA
ANNEAB+NECD+NOMEABCD+SSCDAB defn:parallel
NEAB
NECD
NOMEABCD
SSCDAB
COGHD assumption
COHDG lemma:collinearorder
COHDC lemma:collinearorder
NEHD lemma:betweennotequal
CODGC lemma:collinear4
COCDG lemma:collinearorder
COAGB defn:collinear
COABG lemma:collinearorder
MEABCD defn:meet
NCGHD reductio
EQGH assumption
COABG lemma:collinearorder
COCDH lemma:collinearorder
COCDG cn:equalitysub
MEABCD defn:meet
NEGH reductio
ANBEGSH+EESGSH proposition:10
BEGSH
BEHSG axiom:betweennesssymmetry
EESGSH
EQDS assumption
COGSH defn:collinear
COGDH cn:equalitysub
COGHD lemma:collinearorder
NEDS reductio
ANBEDSP+EESPDS postulate:extension
BEDSP
EESPDS
CODSH assumption
COGSH defn:collinear
COSHG lemma:collinearorder
COSHD lemma:collinearorder
NESH lemma:betweennotequal
COHGD lemma:collinear4
COGHD lemma:collinearorder
NCDSH reductio
BEPSD axiom:betweennesssymmetry
BEGSH
EADSHGSP proposition:15
EAGSPDSH lemma:equalanglessymmetric
COPSG assumption
COPSD defn:collinear
NEPS lemma:betweennotequal
COSGD lemma:collinear4
COGHS defn:collinear
COSGH lemma:collinearorder
NEGS lemma:betweennotequal
NESG lemma:inequalitysymmetric
COGDH lemma:collinear4
COGHD lemma:collinearorder
NCGHD
NCPSG reductio
TRPSG defn:triangle
EAPSGGSP lemma:ABCequalsCBA
EAPSGDSH lemma:equalanglestransitive
TRDSH defn:triangle
EESPSD lemma:congruenceflip
EESGSH
ANEEPGDH+EASPGSDH+EASGPSHD proposition:04
EEPGDH
EASPGSDH
EASGPSHD
EQPG assumption
COPSG defn:collinear
NEPG reductio
NECH lemma:betweennotequal
NCSDH lemma:equalanglesNC
EQCS assumption
COGSH defn:collinear
COGCH cn:equalitysub
COCHD defn:collinear
COCHG lemma:collinearorder
NECH lemma:betweennotequal
COHDG lemma:collinear4
COGHD lemma:collinearorder
COGHS lemma:collinearorder
NEGH lemma:betweennotequal
COHDS lemma:collinear4
COSDH lemma:collinearorder
NCSDH
NECS reductio
ANBECSQ+EESQCS postulate:extension
BECSQ
EESQCS
EECSSQ lemma:congruencesymmetric
MICSQ defn:midpoint
EESHSG lemma:congruencesymmetric
EEHSSG lemma:congruenceflip
MIHSG defn:midpoint
EESDSP lemma:congruencesymmetric
EEDSSP lemma:congruenceflip
MIDSP defn:midpoint
EECDQP lemma:pointreflectionisometry
EECHQG lemma:pointreflectionisometry
EEHDGP lemma:pointreflectionisometry
BEQGP lemma:betweennesspreserved
BEPGQ axiom:betweennesssymmetry
BEPGQ
EEQGCH lemma:congruencesymmetric
EEGQCH lemma:congruenceflip
BEHSG axiom:betweennesssymmetry
NEHS lemma:betweennotequal
RAHSG lemma:ray4
EQDD cn:equalityreflexive
NEHD lemma:angledistinct
RAHDD lemma:ray4
EASGPGHD lemma:equalangleshelper
EAGHDSGP lemma:equalanglessymmetric
NEGS lemma:betweennotequal
RAGSH lemma:ray4
EQPP cn:equalityreflexive
NEGP lemma:angledistinct
RAGPP lemma:ray4
EAGHDHGP lemma:equalangleshelper
EAHGPGHD lemma:equalanglessymmetric
COPGH assumption
COGHS defn:collinear
COHGS lemma:collinearorder
COHGP lemma:collinearorder
NEGH lemma:betweennotequal
NEHG lemma:inequalitysymmetric
COGSP lemma:collinear4
COPSG lemma:collinearorder
NCPSG
NCPGH reductio
EAPGHHGP lemma:ABCequalsCBA
EAPGHGHD lemma:equalanglestransitive
BEPSD
COGSH defn:collinear
COGHS lemma:collinearorder
COGHP assumption
COPGH lemma:collinearorder
NCGHP reductio
OSPGHD defn:oppositeside
PRPQCD proposition:27
NOMEPQCD defn:parallel
AOHGAHGP assumption
EQPP cn:equalityreflexive
NEGP lemma:raystrict
RAGPP lemma:ray4
SSAPGH defn:sameside
EQHH cn:equalityreflexive
NEGH lemma:betweennotequal
RAGHH lemma:ray4
RAGPP
ANBEPMH+RAGAM lemma:crossbar2
BEPMH
RAGAM
BEPSD
BEGSH
BEPMH
EEGSHS lemma:congruenceflip
EESPSD lemma:congruenceflip
EEGPHD lemma:congruenceflip
ANBEGMK+BEDHK postulate:Euclid5
BEGMK
BEDHK
COGAM lemma:rayimpliescollinear
COGMK defn:collinear
COMGA lemma:collinearorder
COMGK lemma:collinearorder
NEGM lemma:raystrict
NEMG lemma:inequalitysymmetric
COGAK lemma:collinear4
COAGB defn:collinear
COAGK lemma:collinearorder
COGAB lemma:collinearorder
COGAK lemma:collinearorder
NEAG lemma:betweennotequal
NEGA lemma:inequalitysymmetric
COABK lemma:collinear4
COHDK defn:collinear
COCHD defn:collinear
COHDC lemma:collinearorder
NEHD lemma:betweennotequal
CODKC lemma:collinear4
COCDK lemma:collinearorder
ANCOABK+COCDK
MEABCD defn:meet
NOAOHGAHGP reductio
AOHGPHGA assumption
EAPGHHGP lemma:ABCequalsCBA
AOPGHHGA lemma:angleorderrespectscongruence2
COHGA assumption
COGHA lemma:collinearorder
NCGHA
NCHGA reductio
EAHGAAGH lemma:ABCequalsCBA
EAAGHHGA lemma:equalanglessymmetric
AOPGHAGH lemma:angleorderrespectscongruence
EQHH cn:equalityreflexive
NEGH
RAGHH lemma:ray4
BEPGQ
SUPGHHQ defn:supplement
BEDHC axiom:betweennesssymmetry
EQGG cn:equalityreflexive
NEHG lemma:inequalitysymmetric
RAHGG lemma:ray4
SUDHGGC defn:supplement
EAPGHGHD
EAGHDDHG lemma:ABCequalsCBA
EAPGHDHG lemma:equalanglestransitive
EAHGQGHC lemma:supplements
SUAGHHB defn:supplement
AOHGBHGQ lemma:supplementinequality
BEBGA axiom:betweennesssymmetry
EQGG cn:equalityreflexive
COGHG defn:collinear
COGHB assumption
COAGB defn:collinear
COBGA lemma:collinearorder
COBGH lemma:collinearorder
NEGB lemma:betweennotequal
NEBG lemma:inequalitysymmetric
COGAH lemma:collinear4
COHGA lemma:collinearorder
NCGHB reductio
OSBGHA defn:oppositeside
OSAGHB lemma:oppositesidesymmetric
SSAPGH defn:sameside
SSPAGH lemma:samesidesymmetric
OSPGHB lemma:planeseparation
ANBEPLB+COGHL+NCGHP defn:oppositeside
BEPLB
BEBLP axiom:betweennesssymmetry
COGHL
NCGHP
EAGHCHGQ lemma:equalanglessymmetric
NCHGQ lemma:equalanglesNC
COGHQ assumption
COHGQ lemma:collinearorder
NCGHQ reductio
NCGHB
BEQGP axiom:betweennesssymmetry
SSBQGH defn:sameside
AOHGBHGQ
SSBQGH
RAGHH
EQQQ cn:equalityreflexive
NEQG lemma:betweennotequal
NEGQ lemma:inequalitysymmetric
RAGQQ lemma:ray4
ANBEQMH+RAGBM lemma:crossbar2
BEQMH
RAGBM
EEGQHC lemma:congruenceflip
EEGSHS lemma:congruenceflip
BEQSC axiom:betweennesssymmetry
BEGSH
BEQMH
EESQCS lemma:congruencesymmetric
EESQSC lemma:congruenceflip
EEQGCH lemma:congruencesymmetric
EEGQHC lemma:congruenceflip
ANBEGMK+BECHK postulate:Euclid5
BEGMK
BECHK
COGBM lemma:rayimpliescollinear
COGMK defn:collinear
COMGB lemma:collinearorder
COMGK lemma:collinearorder
NEGM lemma:raystrict
NEMG lemma:inequalitysymmetric
COGBK lemma:collinear4
COBGA defn:collinear
COBGK lemma:collinearorder
COGBA lemma:collinearorder
COGBK lemma:collinearorder
NEBG lemma:betweennotequal
NEGB lemma:inequalitysymmetric
COBAK lemma:collinear4
COABK lemma:collinearorder
COHCK defn:collinear
CODHC defn:collinear
COHCD lemma:collinearorder
NEHC lemma:betweennotequal
COCKD lemma:collinear4
COCDK lemma:collinearorder
ANCOABK+COCDK
MEABCD defn:meet
NOAOHGPHGA reductio
COHGP assumption
COGHP lemma:collinearorder
NCHGP reductio
COHGA assumption
COGHA lemma:collinearorder
NCGHA defn:oppositeside
NCHGA reductio
NOEAHGAHGP assumption
AOHGAHGP lemma:angletrichotomy2
NOAOHGAHGP
EAHGAHGP reductio
EAHGPPGH lemma:ABCequalsCBA
EAPGHGHD
EAHGPGHD lemma:equalanglestransitive
EAGHDDHG lemma:ABCequalsCBA
EAHGPDHG lemma:equalanglestransitive
EAHGADHG lemma:equalanglestransitive
COAGH assumption
COGHA lemma:collinearorder
NCGHA
NCAGH reductio
EAAGHHGA lemma:ABCequalsCBA
EAAGHDHG lemma:equalanglestransitive
NCDHG lemma:equalanglesNC
EADHGGHD lemma:ABCequalsCBA
EAAGHGHD lemma:equalanglestransitive
BEAGB
BEEGH
BEHGE axiom:betweennesssymmetry
NCAGH
EAAGHEGB proposition:15
EAEGBAGH lemma:equalanglessymmetric
EAEGBGHD lemma:equalanglestransitive
EAAGHGHD
EQHH cn:equalityreflexive
RAGHH lemma:ray4
SUAGHHB defn:supplement
COBGH assumption
COAGB defn:collinear
COBGA lemma:collinearorder
NEGB lemma:betweennotequal
NEBG lemma:inequalitysymmetric
COGHA lemma:collinear4
COAGH lemma:collinearorder
NCAGH
NCBGH reductio
EABGHBGH lemma:equalanglesreflexive
EAGHDAGH lemma:equalanglessymmetric
EAAGHHGA lemma:ABCequalsCBA
EAGHDHGA lemma:equalanglestransitive
SUBGHHA lemma:supplementsymmetric
RTBGHGHD defn:tworightangles
ANEAAGHGHD+EAEGBGHD+RTBGHGHD
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists