Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/sixpiReview.dvi

����;� TeX output 2006.09.07:0929������s�������[(������
����K�src:32sixpiReview.tex�D��tG�G�cmr17�Commen��qts�7ton�m�y�6���g�G�cmmi12���,�pap�s�er���������L�X�Qcmr12�Mic��rhael��Beeson������������5Septem��rb�S�er��7,�2006��+č�G���N�ffcmbx12�Purp�s3oses�ffof�this�note�����G�src:35sixpiReview.tex�K�`y

cmr10�This��note,�@�whic���h�discusses�[�4��],�has�t���w�o��purp�Goses:��M(1)�to�answ���er�a�doubt�expressed�b�y�Nitsc�he�[�6��]����G�
!",�

cmsy10�x�A29�ab�Gout�the�use�of�the�theorem�of�Barb�osa-do�Carmo,�>�and�(2)�to�discuss�the�last�part�of�the����Gargumen���t,�W8where�V�the�niteness�results�of�[�2��]�and�[�3��]�are�applied.�vMW��*�e�sho���w�that�in�the�case�at�hand,����Gthese�UUargumen���ts�can�b�Ge�simplied-the�full�p�o���w�er�UUof�those�dicult�results�is�not�really�needed.����!G�src:41sixpiReview.texRegarding��O(1),��Nitsc���he�refers�to�his��x�105�where�t�w�o�concerns�are�expressed:�2�whether�the�theorem����Gof�˷Barb�Gosa-do�Carmo�remains�applicable�to�branc���hed�minimal�surfaces,��=and�the�dicult�y�of�dening����Gand�@using�normal�v��q�ariations�of�a�branc���hed�minimal�surface.�2 These�are�tak�en�up�in�the�rst�t�w�o����Gsections�UUb�Gelo���w.�q�The�third�section�tak�es�up�the�applications�of�[�2��]�and�[�3��].��!č��G�1��*^V���falidit���y�ffof�Barb�s3osa-do�Carmo����G�src:47sixpiReview.tex�The�b(original���':

cmti10�statement��in�[�1��]�do�Ges�not�include�branc���hed�surfaces,�e]but�the��pr��}'o�of�b(�do�es.��@In�that�pro�of,����Gbranc���h��Up�Goin�ts�are�essen�tially�no�dieren�t�than�an�y�other�zero�of��r�
�b>

cmmi10�N��,�i.e.�B�branc�h�p�Goin�ts�mak�e�no����Gmore�Q�trouble�than�um���bilical�p�Goin�ts.�p�W��*�e�can�mak�e�that�clear�without�giving�details�of�the�pro�Gof,�Rob�y����Gsimply���giving�a��statement��of�the�theorem�that�do�Ges�not�ev���en�refer�to�minimal�surfaces.��fThe�pro�of����Gapplies��`to�an���y�analytic�map��N�{�from�the�disk�to�the�Riemann�sphere,�^whether�it�arises�as�the�normal����Gto�UUa�minimal�surface�or�not.������G��"V

cmbx10�Theorem��T1�(Barb�Q�osa-do�Carmo)����JK�src:51sixpiReview.tex�.�G�L��}'et���N���b�e�a�c�omplex-analytic�map�fr�om�the�close�d�unit�disk����G�D���to���the�R���iemann�spher��}'e.���Supp�ose���that�the�ar��}'e�a���of�the�image��N��(�D�G�)��is�less�than�2��[��.�Then�the�le��}'ast����Geigenvalue�����of�the�pr��}'oblem����8����������33�ٓ�Rcmr7�1��33��&�fe�s����2�����bٸjrj���^��2��|s����=�0�,���with�����=�0����on�the�unit�cir�cle,�is�gr�e�ater�than�2.����G�src:55sixpiReview.tex�This���theorem�is�usually�applied�when��N��ڲis�the�unit�normal�to�a�minimal�surface,�٪but�that�h���yp�Gothesis����Gis��Onot�used�in�the�pro�Gof.�R�If�a�minimal�surface�has�branc���h�p�oin���ts,�
�its�normal��N�j�extends�to�the�branc�h����Gp�Goin���ts�3aanalytically��*�.�fvThe�zero�es�of��r�N�J|�arise�not�only�from�branc���h�p�oin���ts�of�the�minimal�surface�but����Gfrom�UUum���bilical�p�Goin�ts�as�w�ell.��!č��G�2��*^Applicabilit���y�ffof�Barb�s3osa-do�Carmo�����G�src:60sixpiReview.tex�Nitsc���he's��.second�concern�is�ab�Gout�the�dicult�y�of�dening�and�using�normal�v��q�ariations�of�a�branc�hed����Gminimal�yKsurface.�ݩBut�in�[�4��],��Iw���e�start�with�v��q�ariations�in�the�class�of�harmonic�surfaces�usually�used����Gin���Plateau's�problem�are�used.�؋If��k���is�a�\tangen���t�v�ector"�in�this�space,���then�one�can�consider�the����Gnormal��v��q�ariation���f��=��k��H��x��N��.���One��calculates�(as�is�done�in�[�2��])�that����is�a�mem���b�Ger�of�the�k�ernel�of����Gthe���second�v��q�ariation�of�area��D��G��^��2��Ð�A��if��k�M8�is�a�mem���b�Ger�of�the�k�ernel�of�the�second�v��q�ariation�of�Diric�hlet's������`�1����*�s�������[(��������G�in���tegral,�Jand��con�v�ersely�it�is�also�pro�v�ed�in�[�2��]�that�ev�ery�mem�b�Ger�of�the�k�ernel�of��D��G��^��2��Ð�A��arises�in�this����Gw���a�y��*�.�p"Since�Pethe�k���ernel�of��D��G��^��2��Ð�A��consists�of�eigenfunctions�of�the�eigen�v��q�alue�problem�men�tioned�ab�Go�v�e����Gfor�M#eigen���v��q�alue�2,�N�to�mak�e�Barb�Gosa-do�Carmo�applicable�w�e�need�only�sho�w�that����is�not�iden�tically����Gzero.�q�That�UUis�the�main�task�accomplished�in�[�4��],�b���y�ruling�out�\forced�Jacobi�families."�� ����G�3��*^A�ffdirect�pro�s3of�to�replace�dep�endencies�on�[�2���]�and�[�3��]�����G�src:72sixpiReview.tex�When�.the�b�Goundary�curv���e��has�total�curv��q�ature������6��[ٲ,�>�then�b�y�the�Gauss-Bonnet-Sasaki-Nitsc�he����Gform���ula,�YQif�X�it�b�Gounds�a�branc�hed�minimal�surface,�YQthe�order�of�the�branc�h�p�Goin�t�could�b�Ge�at�most�1����Gfor�l�an�in���terior�branc�h�p�Goin�t,�rcand�2�for�a�b�Goundary�branc�h�p�Goin�t;�x3and�there�can't�b�Ge�more�than�one����Gbranc���h��p�Goin�t.�H�In�[�4��],��b�Gefore�app�ealing�to�an���y�niteness�theorems,��w�e�pro�v�e�that�if�the�one-parameter����Gfamily�冀u���^��	0e�rcmmi7�t��t��has�a�branc���h�p�Goin�t�when��t��M�=�0,�>then��it�is�immersed�for��t��M>��0,�and��has�least�eigen���v��q�alue����G��̸��2.���Then��w���e�app�Geal�to�[�2��]�(in�the�case�of�an�in�terior�branc�h�p�Goin�t)�or�to�[�3��]�(for�a�b�Goundary����Gbranc���h�UUp�Goin�t)�to�sa�y�that�is�imp�Gossible.����!G�src:81sixpiReview.texW��*�e��7here�giv���e�direct�argumen�ts�to�complete�the�pro�Gof�without�reference�to�the�complicated�ar-����Ggumen���ts��"of�[�2��]�and�[�3��].�	.These�argumen���ts,��of�course,�ha���v�e��"b�Geen�extracted�from�the�pro�ofs�in�those����Gpap�Gers,��but��man���y�of�the�complications�that�arise�there�can�b�e�a���v�oided��in�this�simple�case,��where�the����Gbranc���h�Q�p�Goin�t�is�of�the�lo�w�est�p�Gossible�order.�p�This�still�turned�out�to�b�e�somewhat�complicated,�Robut����Git�UUis�m���uc�h�UUless�complicated�than�[�3��].����!G�src:86sixpiReview.texF��*�or��7an�in���terior�branc�h�p�Goin�t�it�is�extremely�easy�to�a�v�oid�citing�[�2��]:�y�when��u���^��t��^��is�immersed,��/the����Gzero�Ges�=�of�the�function��f�QG�in�the�W��*�eierstrass�represen���tation�are�double;�E�that�is��f���(�z�p��)��=��A���^��2��|s�(�z��)�=�for�some����Ganalytic��Yfunction��A�,�
Xand�as�discussed�in�the�rst�part�of�[�2��],��A��will�dep�Gend�analytically�on�a�rational����Gp�Go���w�er�%�of��t�.�a�Hence�when��t���=�0,�/"the�%�ro�ots�of��f�9$�are�also�double,�/"con���tradicting�the�fact�that�the�branc�h����Gp�Goin���t���m�ust�ha�v�e�order�1,���since�the�branc�h�p�Goin�ts�are�the�common�zeros�of��f��S�and��f��g��[ٟ�^��2���L�,���so�if��f�$��=�&�A���^��2�����G�then�UUthe�branc���h�p�Goin�ts�are�the�common�zero�Ges�of��A��and��g�[ٲ,�eac�h�o�Gccurring�with�m�ultiplicit�y�2.����!G�src:94sixpiReview.texNo���w���consider�the�case�when��u���^��t��L"�has�a�b�Goundary�branc�h�p�Goin�t�when��t��2�=�0,��)and���is�immersed�for����G�t��S>��0��with�least�eigen���v��q�alue����S�2.�I�By�the�Gauss-Bonnet-Sasaski-Nitsc�he�form�ula,�the�branc�h�p�Goin�t����Ghas���order�2,���i.e.��k2�m��with��m�m�=�1.�W��*�e���rst�claim�that�it�is�not�the�case�that�some�branc���h�p�Goin�t(s)����G�c����i��TL�(�t�)�p�lying�outside�the�parameter�domain�(for��t��>��0)�p�con���v�erge�to�the�b�Goundary�branc�h�p�Goin�t�(when����G�t���=�0).�[eLet�-�U�)H�b�Ge�a�small�neigh���b�orho�o�d�of�the�b�oundary�branc���h�p�oin���t,��and�let��U����^��+��
�زb�e�the�part�inside����Gthe��parameter�domain�and��U����^��O!�cmsy7����βthe�part�outside.���By�the�Gauss-Bonnet-Sasaki-Nitsc���he�applied�to����Gminimal�D�surface��u���^��t����o���v�er�D��U����^��+���[�(or,���if�y���ou�w�orry�ab�Gout�the�corners�of��U����^��+�����,���of�a�disk�tangen�t�to�the����Gb�Goundary�hAat�the�b�oundary�branc���h�p�oin���t,���small�enough�to�t�inside��U��),�the�Gaussian�area�of��u���^��t�����G�o���v�er���U����^��+�����is�appro���ximately�2��=̲more�than�when��t��t�=�0���(when��t��is�close�to�zero).��No�w�apply�Gauss-����GBonnet-Sasaki-Nitsc���he�2gto�the�minimal�surface��u���^��t�����o�v�er�the�domain��U��.��The�total�curv��q�ature�of�the����Gb�Goundary�4approac���hes�(2�m����+�1)2��"�=��6��\
�since�4when��t��go�es�to�zero�for��U�O�xed,�;the�surface�approac���hes����Ga��nbranc���hed�minimal�surface,��4with�the�asymptotic�form�(�Re���9(�z��p���^��2�m�+1��%��)�;������Im����(�z��p���^��2�m�+1���)�;�O�G�(�z��p���^��2�m�+1+�k�� �Ȳ).��On����Gthe��4other�side�of�the�Gauss-Bonnet-Sasaki-Nitsc���he�form�ula,���for��t�/�>��0,�there��4is�a�con���tribution�of�2�����G�from��the�constan���t�term�and�2��-زfrom�the�Gaussian�area�o�v�er��U����^��+�����.���That�do�Ges�not�lea�v�e�ro�Gom�for�a����Gcon���tribution���of�4���ʲfrom�a�branc�h�p�Goin�t��c�(�t�)�approac�hing�the�cen�ter�of��U���as��t��approac�hes�0.�H�Hence����Gno�UUsuc���h�branc�h�p�Goin�t�exists.����^��1������!G�src:117sixpiReview.tex�Therefore,���as��Jin�the�case�of�an�in���terior�branc�h�p�Goin�t,���the�W��*�eierstrass�function��f��ٲhas�double�zero�Ges����Gand�D5can�b�Ge�written�as�(�z��6����a���^��2��|s�)�A����0�����with��a���=��a�(�t�)�D5and��A����0���analytic�in��z��̲and��t��(p�Gossibly�after�replacing����G�t�\��b���y�a�rational�p�Go�w�er�of�the�original��t�),��aand��a�(�t�)�con�v�erging�to�the�branc�h�p�Goin�t�as��t�}Ҹ!��0.��W��*�e��G�ٕ�ff�r�	J=�����"5��-:��Aa�cmr6�1����L��|{Ycmr8�Ruling�mout�branc�Îh�p�<roin�ts���2cmmi8�c�(�t�)�coming�from�outside�the�parameter�domain�w�as�one�of�the�gaps�in�[�3��@];��this�gap�is��	��lled���in�[�5��@]�b�Îy�the�\hemispheric�co�v�ering�theorem",�Őwhic�h�sa�ys�that�the�\extra"�Gaussian�area�for��t�\t>��0���comes�in�the���form���of�hemispheres,�not�spheres,�and�all�on�the�same�side�of�the�Riemann�sphere.�7But�in�case��m����=�1,�there���is�only���2��ӿof��Xextra�Gaussian�area,�so�it��#�f�cmti8�obviously��m�Îust�come�as�a�hemisphere.������`��2������s�������[(��������G�ha���v�e�p��a�(�t�)��=��t���^��
��!���T��+�K�O�G�(�t���^��
�n9�+1��A��)�for�some��
��8�.�ýIf��Im��bp(��	z�)��>��0�then�as�in�[�2��],�w{almost�the�en���tire�sphere�will�b�Ge����Gco���v�ered�j�b�y�the�Gauss�map�on�a�neigh�b�Gorho�o�d�of��a�(�t�)�still�con���tained�in�the�parameter�domain�of��u�,����Gcon���tradicting�UUthe�fact�that�the�least�eigen�v��q�alue�of��u��is�2.����!G�src:125sixpiReview.texNext,�jw���e�2�sho�w�that��u����t����is�a�forced�Jacobi�direction�when��t�8�=�0.�	�More�precisely��*�,�j�u����t���V�=��t���^��q��j��h��for����Gsome��.�q�5�where��h��is�not�iden���tically�zero�when��t��ֲ=�0,��$and��.it�is��h���^��0��U��that�w�e�claim�is�forced�Jacobi.��SIf����Gnot,���then�Ǝ���̲=��h��[���N�ݩ�is�an�eigenfunction,���ev���en�when��t��̲=�0;��+and�it�has�one�sign�since�it�is�the�limit����Gof��Seigenfunctions�for�the�least�eigen���v��q�alue�2;�4�but�w�e�can�sho�w�it�is��O�G�(�j�z�p��j���^��2��|s�),��con�tradicting�the�Hopf����Glemma.�`_This�!is�done�m���uc�h�!more�generally�in�[�3��],�+�Theorem�7.2,�but�in�this�case�w���e�can�do�it�directly����Gand�UUsimply��*�.�q�In�fact,�not�only����but��h��is��O�G�(�j�z�p��j���^��2��|s�).�W��*�e�ha���v�e��g�����SQ�u����z������g��=�����ym-(�z��w��8�a�)�����2��|s�A����0����ʲwith�UU�A����0���(0�;����0)���6�=�0�����5�����PK��u����z�I{t������g��=�����ym-��2(�z��w��8�a�)�a����t���V�A����0���S�+�(�z����a�)�����2������<$�����@��8A����0������w�fe�ɟ	(֍�0�@��8t��������⍍��g��=�����ym-��2�z�p��	z
��8t�����
�n9��1��^�(�A������0����0����S�+�8�O�G�(�t�))�+��O��(�z��p�����2���
�)��where�UU�a���=���	zt���^��
��v�and���В�6�=�0�������G�src:136sixpiReview.texSince��p�u����z�I{t��Eֲ=���u����tz���=��t���^��q��j��h����z�����,���w���e��pm�ust�ha�v�e��h����z��@��=����2�z�p����and��q�Ȳ=��
�ո����1.�Hence��h��=���������u

cmex10�R����j���
O��z��	#���]ӱ0����ӵh����z��F9�dz���=��O�G�(�j�z�p��j���^��2��|s�).����GThis�UUcon���tradicts�the�Hopf�lemma,�as�men�tioned,�and�sho�ws�that��h���^��0���Ȳis�a�forced�Jacobi�direction.����!G�src:138sixpiReview.texThe��next�part�of�the�argumen���t�is�a�sp�Gecial�case�of�the�argumen�t�on�pp.��15{16�of�[�3��],�}the�rst����Gpart�
rof�the�pro�Gof�of�Theorem�8.1,�lbut�in�the�case�at�hand,�the�argumen���t�simplies�considerably��*�,�and����Gpp.�q�17{30�UUare�not�needed�for�the�application�to�the�6���.�theorem.����!G�src:142sixpiReview.texSince�UU�h��is�a�forced�Jacobi�direction,�w���e�kno�w�that��h��has�the�form��Re��#�(
�u����z�����),�where��g�����
(�z�p��)��=��cz�������J��(�+�8�O�G�(�j�z��j������J���+1�����)�;����G�src:144sixpiReview.tex�with��ȵc�a-�6�=�0�and��J�Wf�=�1�or��J�Wf�=�2.��!W��*�e�can�rule�out��J�Wf�=�2�since�w���e�ha�v�e�assumed��u�(0)�a-=�0�for�all��t�,����Gwhic���h�UUimplies��h�(0)��=�0�UUfor�all��t�.�q�Hence��J��Q�=��1.�Therefore��������ҵu����t�������ᦲ=�����Шĵt�����q��j��h���������ᦲ=�����Шĵt�����q��j��h�����0��|s�(1�8�+��O�G�(�t�))����������=�����Шĵt�����q���j��Re��8�(
�u����z�����)(1�8�+��O�G�(�t�))����g���G�src:152sixpiReview.texW��*�riting���the�co�Gordinates�of��u��as�sup�erscripts�on�the�left,�яas�in��u���=�(���^��1��|s�u;������^��2��'�u;������^��3���u�),�w���e���ha�v�e�for�the����Gfunction�UU�f�h�in�the�W��*�eierstrass�represen���tation,��f���^�����0��፴t���W�=���t���^��q��j��(
�f���)����z�����.�q�Here's�the�pro�Gof:��������e�f����t�������F�=�������
0����1������u����z�I{t��	�Ǹ�8�i��������2��'�u����z�I{t����������F�=������
0(�����1��|s�u����t���6��8�i��������2��'�u����t���V�)����z����������F�=������
0�t�����q��j��(�����1��|s�h�8���i��������2��'�h�)����z����������F�=������
0�t�����q��j��(�����1��|s�h�����0���S��8�i��������2��'�h�����0���)����z�����(1�+��O�G�(�t�))���������F=������
0�t�����q��j��(
(�����1��|s�u����z���q���8���2���S�u����z�����)����z���(1�8�+��O�G�(�t�))���������F=������
0�t�����q��j��(
�f���)����z�����(1�8�+��O�G�(�t�))��as�UUclaimed�ab�o���v�e�����g���G�src:162sixpiReview.texNo���w�UUputting�in�the�form�ula�for�
,�w�e�ha�v�e������Ur��f����t���V�(�z�p��)�����t�=���������t�����q��j��(�cz��p�����2�m��J��[V�)����z�����(1�8�+��O�G�(�t�)�+��O��(�z�p��)��where�UU�m���=�1�and��J��Q�=�1���������t�=���������t�����q��j��(�cz�p��)����z�����(1�8�+��O�G�(�t�)�+��O��(�z�p��)��������t�=���������ct�����q��j��(1�8�+��O�G�(�t�)�+��O��(�z�p��))����g���G�src:168sixpiReview.texOn�UUthe�other�hand,�w���e�kno�w�that��f�ڧ�=��(�z��w��8��	zt���^��
��!��)���^��2��|s�A����0���(�z�p��)(1�+��O�G�(�t�)),�UUso�����b��f����t��Ln�=����2��	zt�����
�n9��1��^�(�z��w��8��t�����
��!��)�:������`��3����)�s�������[(��������G�src:170sixpiReview.tex�These�B�t���w�o�expressions�for��f����t����m�ust�b�Ge�equal,�Fvso�w�e�ha�v�e��
�UP�=���q�o��+��1�and��c��=���2��	z�.�k�No���w,�Fvlet��w���=��z�p�=t���^��
��!��,����Gso�UU�z�7��=���t���^��
��!��w�D�.�q�W��*�riting��f�h�in�terms�of��w��8�w���e�ha�v�e������q�εf���(�z�p��)������w�=������?�t�����2�
��	�(�w�}ø�8��	z�)�����2��|s�(1�+��O�G�(�t�����
��!��w�D�)�+��O��(�t�))��������o/�f����t���V�(�z�p��)������w�=������?��2�t�����2�
��	�(�w�}ø�8��	z�)�w����t���V�(1�+��O�G�(�t�))�+��t�����2�
���(�w�}ø���	z�)�����2��|s�O�G�(1)������G�src:176sixpiReview.texSince�UU�w����t��Ln�=��(�z�p�t���^���
��a��)����t���=���
��8z�p�t���^���
�n9��1��e�=���
�w�D�t���^���1��
�t�,�UUw���e�ha�v�e������k��f����t���V�(�z�p��)��������=���������2�t�����2�
�n9��1��Zu�(�w�}ø�8��	z�)�w�D�(1�+��O�G�(�t�))�+��t�����2�
��	�(�w�����	z�)�����2��|s�O�G�(1)������G�src:180sixpiReview.texComparing���this�to�the�previously�deriv���ed�equation��f����t���V�(�z�p��)��=��ct���^��q��j��(1��+��O�G�(�t�)�+��O��(�z�p��)),�ʑthe���lo���w�est�exp�Gonen�ts����Gof��˵t��m���ust�matc�h:���q�"�=��2�
�z���β1,��or��q�G��+�1��=�2�
��8�.�:DBut���w���e�already�deriv�ed��q�G��+���1��=��
��8�.�:DThis���is�a�con�tradiction,����Gsince�UU�
�UP>���0.�q�That�completes�the�pro�Gof.��!č�G�References�������H�[1]���&���src:188sixpiReview.texBarb�Gosa,�vJ.,�and���do�Carmo,�vM.,�Stable���minimal�surfaces,�v�Bul���l.�"A���mer.�Math.�So��}'c.����80��(1974),����&��581-583.������H[2]���&���src:191sixpiReview.texBeeson,��hM.,�Some���results�on�niteness�in�Plateau's�problem,��hP���art�I,��Math��$Zeitschrift��175��(1980)����&��103-123.������H[3]���&���src:194sixpiReview.texBeeson,�M.���Some�results�on�niteness�in�Plateau's�problem,�P���art�I�GI,��Math.��Zeitschrift��181����&���(1982)�UU1-30.������H[4]���&���src:197sixpiReview.texBeeson,�VeM.,�The�V.6����theorem�ab�Gout�minimal�surfaces,�Ve�Pacic���Journal�of�Mathematics�V.�117��No.����&��1,�UU1985.������H[5]���&���src:200sixpiReview.texBeeson,��M.��GA��1real-analytic�Jordan�curv���e�cannot�b�Gound�innitely�man�y�relativ�e�minima�of�area,����&��to�UUapp�Gear.������H[6]���&���src:203sixpiReview.texNitsc���he,�n,J.�i4C.�C.��L��}'e�ctur�es��/on�Minimal�Surfac��}'es,���V��;�olume�1�,�Cam���bridge�i4Univ�ersit�y�Press,�n,Cam-����&��bridge�UU(1988).������`�4����<����;�s�ï�
�#�f�cmti8��"V

cmbx10��':

cmti10���N�ffcmbx12��2cmmi8��Aa�cmr6�|{Ycmr8���g�G�cmmi12�X�Qcmr12�D��tG�G�cmr17�
!",�

cmsy10�O!�cmsy7�
�b>

cmmi10�	0e�rcmmi7�K�`y

cmr10�ٓ�Rcmr7���u

cmex10�G7�����

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists