Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/sixpi.dvi

����;� TeX output 2014.03.27:1327������^e���ݐT�o�����T��Ыv��-�	
cmcsc10�P��6fa���cific�fdJournal�of�Ma��fethema�tics���>��2�o���		cmr9�V��:�ol.�p118,�TNo.�1,�1985���=��#.-��-�ff
cmcsc10�The�p��X�Qffcmr12�6���g�ffcmmi12����Theorem�About�Minimal�Surf���Ra��ces���>���%���-�

cmcsc10�Michael��Beeson����/t���"V

cmbx10�W��
�e�c`pro��9v�e�c_that�if��K�`y

cmr10���is�a�real-analytic�Jordan�curv��9e�in��
�b>

cmmi10�R��ǟ�^��ٓ�Rcmr7�3�����+I�whose�M.total�M-curv��\rature�do�Q�es�not�exceed��6��[�,�k$then����cannot����+Ib�Q�ound��innitely��man��9y�minimal�surfaces�of�the�top�Q�ological����+It��9yp�Q�e��Aof��@the�disk.�R6This�generalizes�an�earlier�theorem�of����+IJ.�rUC.�C.�Nitsc��9he,���who�pro�v�ed�the�same�conclusion�under����+Ithe�2�additional�2�h��9yp�Q�othesis�that����do�Q�es�not�b�ound�2�an��9y�mini-����+Imal���surface���with�a�branc��9h�p�Q�oin�t.��It�should���b�Q�e�emphasized����+Ithat�%Pthe�theorem�refers�%Oto�arbitrary�minimal�surfaces,�H�sta-����+Ible���or���unstable.�
�This�is�the�only�kno��9wn�theorem�that����+Iasserts���that�all���mem��9b�Q�ers�of�a�geometrically�dened�class����+Iof���curv��9es���cannot�b�Q�ound�innitely�man��9y�minimal�surfaces,����+Istable��Tor�unstable.����^��1������!G�A�T�result�U<of�B����ohme�[�5��]�sho���ws�U;that�for�eac�h�in�teger��n�,��tthere�are�curv�es�meeting����Gthe��h���yp�Gotheses��of�our�theorem�that�b�Gound�more�than��n��minimal�surfaces.����GHence��tit�will�not�b�Ge�p�ossible�to�impro���v�e��tthe�theorem�b���y�giving�a�xed�b�ound�on����Gthe�e�n���um�b�Ger�e�of�minimal�surfaces�b�Gounded�b���y�.��The�p�ossibilit���y�e�remains�op�en,����Gho���w�ev�er,�to���giv�e�suc�h�a���b�Gound�(p�erhaps�ev���en�3)�on�the���n�um�b�Ger�of���':

cmti10�immerse��}'d����G�minimal�UUsurfaces�b�Gounded�b���y�.����!GIn��![�2��]�and��"[�3��],���an�attac���k�is��"b�Gegun�on�the�\niteness�problem"�for�minimal����Gsurfaces�L[that�L\furnish��r��}'elative�w*minima��for�the�area�functional.�V�This�problem����Gso�Gon�˫comes�ˬdo���wn�to�the�study�of�one-parameter�families�of�minimal�surfaces����Gterminating���in���a�minimal�surface�with�a�branc���h�p�Goin�t.�faThe���partial�results����Gobtained�xhin�xithose�t���w�o�xhpap�Gers�form�half�the�basis�for�the�results�of�this�pap�Ger.����GThe��other��half�is�a�calculation�presen���ted�here,���also�concerning�branc���h�p�Goin�ts.����GThese���t���w�o�results���enable�us�to�remo�v�e���the�h�yp�Gothesis�ab�out�branc���h���p�oin�ts���from����GNitsc���he's�UUpro�Gof.���捑!G�1.�u�In��9tro�Q�duction��and�notation.�['�P��Y�is�M�the�M�unit�disk,���x䍑���������P����βits�closure.�A����G�minimal���surfac��}'e�UU�is�a�map��u���:���x䍑�������P���
]M�
!",�

cmsy10�!��R��ǟ�^��3��史suc���h�UUthat��u���=�0�UUand��`������<$����F�@��8u����F�w�fe�ӟ	(֍�Q0@��8z�������,������<$��l�@��8u��l�w�fe�ӟ	(֍�Q0@��8z������1�=��������^���u

cmex10���������<$��V��@��8u��V��w�fe�ӟ	(֍�Q0@��8z�������� ş��^������}9��۱2��&�IJ=��0�:��G��S�ff�ݍ�	J=�����"5��-:��Aa�cmr6�1����L��|{Ycmr8�This��=cop�Îy��<has�b�<reen�ret�Îyp�ed��=in�T����A���E��MX�in�2006�to�b�<re�p�osted��=on�the�W��J�eb�(without�c�Îhanging��	��the��/mathematics).�wSee�the�author's�w�Îeb�site�for�discussion�and�more�con�temp�<rorary�references.��������17����*�^e���ݐT�o�����T��G�W��*�e�߃sa���y��u��is��b��}'ounde�d�߃�b�y�the�Jordan�curv�e�߂�in�case��u��restricted�to�the�circle����G�S������^��1���^�is��^a�reparametrization�of�.���A��<�br��}'anch�up�oint��^�of��u��is�a�zero�of�the�analytic����Gfunction�x�@��8u=@�z�p��.�ܗIt�is�x�an��interior��branc���h�p�Goin�t�x�or�a��b��}'oundary��branc���h�p�Goin�t����Gaccording���as���it�lies�in��P�[a�or�on��S������^��1���.�Y=The��or��}'der��of�a�branc���h�p�Goin�t���is�the�order����Gof��the���zero�of��@��8u=@�z�p��.�5�W��*�e��shall�assume��u��is�real-analytic�in���x䍑(�������P�����and��is�real-����Ganalytic.�n�Sometimes,�N3for�Lkcon���v�enience,�w�e�Lkma�y�Ljallo�w�other�Ljparameter�domains����Gthan���x䍑�:�����UU�P���$r�,�UUin�whic���h�case�the�ab�Go�v�e�denitions�undergo�ob�vious�mo�Gdications.����!GThe�UU�Dirichlet���functional��or��Dirichlet�inte��}'gr�al�UU�E����(�u�)�is�dened�b���y��y�����E����(�u�)��=�����<$���K1���K�w�fe�	(֍2�������'��c��Z���-���c�Z������	y�	0e�rcmmi7�P��"Q�jr�u�j�����2��'�dx���dy�[�:��@��G�On���a�suitable���space�of�surfaces,���E�-x�is�F��*�rec���het�dieren�tiable,��and���its�critical����Gp�Goin���ts���are�exactly�the�minimal�surfaces�b�ounded�b���y�.�h�A�t�a�minimal�surface����G�u�,�'�E���is��t���wice��F��*�rec�het�dieren�tiable,�'�and�the��second�F��*�rec�het�deriv��q�ativ�e��D��G��^��2��Ð�E����(�u�)����Gis���a�bilinear�op�Gerator�on�the�space�of�\tangen���t�v�ectors"��k�J=�:���x䍑6���������P����i�!����R��ǟ�^��3��	7�suc�h����Gthat�?��k����=�N0�and��k�P��(�e���^��i��Z��)�?�is�tangen���t�to��at��u�(�e���^��i��Z��).�1�This�is�the�mo�Gdern�w���a�y����Gof��+lo�Goking�at�the��,\second�v��q�ariation"�of�Diric���hlet's�in�tegral.�mJThe�k�ernel�of�the����Gsecond��v��q�ariation�is��the�k���ernel�of�this�bilinear�op�Gerator.�n�The�mem���b�ers��of�the����Gk���ernel�UUare�c�haracterized�b�y�the�\k�ernel�equation"���j������<$���K�@��8k���K�w�feb��	(֍�7@��8z�������	������<$��l�@��8u��l�w�fe�ӟ	(֍�Q0@��8z������1�=��0�:��\	��G�F��*�or�UUa�pro�Gof,�see�[�2��].����!GIf��	�u��is�a��minimal�surface,��there�is�alw���a�ys�a��	three-dimensional�family�of����Gk���ernel�Ddirections�due�Dto�the�action�of�the�conformal�group.�>These�ha���v�e�Dthe����Gform�ٵk���=���Re���Q(�A@��8u=@�z�p��)��where��A��is�analytic.�^�The�condition�that��k�mp�b�Ge�a�tangen���t����Gv���ector�UUrestricts�the�c�hoice�of��A��to�a�three-dimensional�family��*�.�q�(See�[�13��
].)����!GIf�&��u��is�a�minimal�surface�with�branc���h�p�Goin�ts,�Z�there�are�in�addition�some����Gk���ernel��+directions��*called�\forced�Jacobi�elds"�or�\forced�Jacobi�directions".����GThese�t/ha���v�e�the�t0form��Re��Bh(�A���@��8u=@�z�p��),���where�t0�A��is�no���w��mer��}'omorphic�,���but�with����Gp�Goles���lo�cated�among�the���branc���h�p�oin���ts�of��u��and�of�lo�w���enough�orders�so�that����G�A���@��8u=@�z�:�is���analytic.�&�Again���the�condition�that��k��9�b�Ge�a�tangen���t�v�ector���restricts����Gthe�T�p�Gossible�c���hoices�of��A��to�a�nite-dimensional�family��*�.�@F�or�T�eac�h�in�terior�branc�h����Gp�Goin���t�m�of�m�order��m�,�s�or�b�Goundary�branc���h�p�Goin�t�m�of�order�2�m�,�s�there�are�2�m��forced����GJacobi��~elds;�this�calculation�is�made�explicitly�in�the�app�Gendix��}to�[�6��].��BNote����Gthat�Z�a�b�Goundary�branc���h�p�oin���t�Z�m�ust�Z�ha�v�e�ev�en�order,���in�order�that�the�b�Goundary����Gb�Ge�UUtak���en�on�monotonically��*�.����!GBy�cna��one-p��}'ar�ameter���family�cn�of�cominimal�surfaces��u���^��t���IJ(w���e�prefer�this�notation����Gto�2��u�(�t�)),�9�w���e�mean�a�real-analytic�function�2�of�t�w�o�v��q�ariables��t��and��z�p��,�9�dened�for����G(�t;���z�p��)���in�some�set����I�.�����x䍑��������e��P���
4̲,��Xwhere��I�an�is�a�real�in���terv��q�al�of�the�form�[0�;���t����0��|s�]�for�some��������18����l�^e���ݐT����a�The���6��"�theorem�about�minimal�surf��ra��ces�ypA�19���o�����T��G�t����0���P�>�ݲ0,�Misuc���h��that�for�eac�h��t�,�Mj�u���^��t���3�=�ݵu�(�t;�����)�is�a�minimal�surface.��,The�w�ork�of����GB����ohme,��MT��*�omi,��Land��JT�rom���ba��Khas�reduced�the�question,��Mwhether�a�(real-analytic)����GJordan�K�curv���e�K�can�b�Gound�innitely�man���y�minimal�surfaces,�M�to�the�study�of�the����Gp�Gossible���existence�of�one-parameter���families�of�minimal�surfaces,��all�with�the����Gsame���b�Goundary��*�.�u�The�strongest�of�these�theorems,��whic���h�pro�duces�analytic����Gone-parameter�UUfamilies�as�dened�ab�Go���v�e,�UUis�due�to�B����ohme�[�4��].����!GW��*�e���do���not�w���an�t���to�consider�one-parameter�families�that�are�trivial�in�the����Gsense�k�of�b�Geing�k�induced�b���y�the�conformal�group.�#�W��*�e�therefore�imp�Gose�the�follo���w-����Ging��+additional��*condition�on�the�meaning�of�the�phrase�\one-parameter�family":����GThat�vs�u����t�����=��J�@��8u=@�t��I�=��t���^��a���p�h�vs�for�some�tangen���t�v�ector��h��to��u�,�~�where��h��is�not�a�con-����Gformal�UUdirection.����!G�2.��One-parameter�)�families�)�of�branc��9hed�minimal�surfaces.�M�W��*�e���de-����Gne��"a��#one-parameter�family��u���^��t��px�of�minimal�surfaces�to�b�Ge�a��for��}'c�e�d�24Jac�obi�family����G�if��Xfor�ev���ery��t��(in�some�in�terv��q�al�whic�h�is�the�domain�of�denition�of��W�u���^��t���V�),��Y�u����t��V��is����Ga��8forced��9Jacobi�v���ector�of��u���^��t���V�.�yqTh�us�necessarily��9eac�h��u���^��t��2��is�a��9branc�hed�minimal����Gsurface.����!G2.1.���Theorem�.��L��}'et�讵u���^��t��n�b�e�a�one-p�ar�ameter�family��of�minimal�surfac�es����Gb��}'ounde�d�by�the�same�r��}'e�al-analytic�Jor�dan�curve.�i�Then��u���^��t���g�is�not�a�for�c�e�d�Jac�obi����Gfamily.����!GPr��}'o�of�.�nXA���forced���Jacobi���v���ector�has�the�form��Re���(�A���@��8u=@�z�p��)�for���some�mero-����Gmorphic��nfunction��o�A�.�>%Our�rst�ob��8jectiv���e,��ipreliminary�to�the�main�computation,����Gis��3to��4sho���w�that�if�a�forced�Jacobi�family�exists,���w���e�ma�y�assume��4that�for��t��in����Gthe�|Hsome�|Iin���terv��q�al�[0�;���t����0��|s�]�eac���h��u���^��t����has�a�branc���h�p�Goin�t�|Iof�the�same�order��m��at�0,����Gor��else�that�eac���h�ҵu���^��t���'�has�a�branc�h�p�Goin�t�of�order��m�Ҳat�1,��suc�h�that�ҵA��has�a�p�Gole����Gat�UUthis�branc���h�p�Goin�t.����!GSupp�Gose��,0��-is�a�branc���h�p�Goin�t��-of��u���^��0��|s�.��MThen�for�small��t�,���and�for�some�neigh-����Gb�Gorho�o�d���U��6�of�0,��Lthe��set�of�branc���h�p�Goin�ts��of��u���^��t��p�in��U��5�is�giv�en��b�y�nitely��man�y����Gfunctions��K�q����i��TL�(�t�)��Jwhic���h�are�analytic�in�some�rational�p�Go���w�er��Kof��t�;�Othis�follo�ws��Kfrom����Gthe�O�theorems�O�on�the�structure�of�analytic�v��q�arieties�discussed�in��x�3�of�[�2��],�P�since����Gthe���branc���h���p�Goin�ts�are���the�sim�ultaneous���zero�Ges�of�the�three�analytic�functions����Gwhic���h�"-are�the�co�Gordinates�of�".�@��8u=@�z�p��.�`�W��*�e�"-ma�y�".bring�an�y�sp�Gecied�branc�h�p�Goin�t����Gof�i�u���^��t���f�to�origin�ib���y�a�conformal�transformation�dep�Gending�on��t�.�#This�pro�Gcess�do�es����Gnot��nc���hange��mthe�prop�Gert�y��mthat��u����t��lIJis�forced�Jacobi,��but�only�adds�a�conformal����Gdirection�J\to�J[�u����t���V�,�L�i.e.�nadds�an�analytic�function�to��A�.�nIn�the�case�of�a�b�Goundary����Gbranc���h��>p�Goin�t�of��u���^��0��|s�,��8w�e�rst�note�that�for�some�branc�h�p�Goin�t�of��u���^��0��U��and�some����Gone��Eof�the��Fbranc���h�p�Goin�ts��q����i��TL�(�t�)�whic�h��Fcon�v�erge�to�that�branc�h��Fp�Goin�t�as��t�QS�!�QR�0,����Gw���e�
ha�v�e�that�	�c����i��TL�(�t�)�is�in�the�closed�disk���x䍑U�������P���1�for��t�����0�	and��A��has�a�p�Gole�at��q����i��TL�(�t�);�-#if����Gone�w=of�these��q����i��TL�(�t�)�w>lies�in�the�op�Gen�disk��P��Ͳfor��t���>����0,��w���e�can�simply�restrict�the����Gallo���w�ed�0in�terv��q�al�of��t�-v�alues�0	and�assume�w���e�are�dealing�with�an�in���terior�branc�h�������^e���ݐT����a�The���6��"�theorem�about�minimal�surf��ra��ces�ypA�20���o�����T��Gp�Goin���t.�`YOtherwise,�+�w�e�!ma�y�!assume�that��q����i��TL�(�t�)�remains�a�b�Goundary�branc���h�p�Goin�t����Gfor�UUp�Gositiv���e��t�;�then�w�e�can�bring�it�to�1�b�y�a�rotation.����!GIt��will��	b�Ge�con���v�enien�t��to�treat�the�b�Goundary�branc���h�p�oin���t��	case�and�the����Gin���terior�F�branc�h�F�p�Goin�t�case�F�sim�ultaneously��*�.�l�This�can�F�b�Ge�arranged�b���y�supp�Gosing����Gthat�ZRthe�branc���h�ZSp�Goin�t�ZRis�at��z�ꩲ=�z0;���in�the�b�oundary�branc���h�ZSp�oin�t�ZRcase�that����Gmeans�UUthat�the�parameter�domain�is�the�disk�of�radius�1�cen���tered�at��z�7��=����1.����!GAfter��kthe�conformal�transformation��jto�bring�the�branc���h�p�Goin�t�to�origin,����u����G�is�4analytic�4not�in��t��but�in�the�new�parameter��s���=��t���^��
��U��for�4some�p�Gositiv���e�rational����Gn���um�b�Ger�8�
��8�.��W��*�e�ha���v�e�8�u����t��Ln�=���Re���Q(�A@�u=@�z�p��)��=��u����s��F:�
�t���^��
�n9�O!�cmsy7��1��^�,�q�so�8�u����s��
R�=��t���^��1��
���
���8��^���1���J��Re���(�A@��8u=@�z�p��).����GRestricting��the��range�of�v��q�alues�of��t��to�a���v�oid��the�problematic�p�Goin���t��t����=���0,��w�e����Gsee�5�that��u����s��{Ųis�still�a�forced�Jacobi�direction.�g.W��*�e�no���w�drop�the�letter��s�,�;�using��t����G�instead��\for��[the�new�parameter.�%�W��*�e�ha���v�e��\sho�wn�that��\w�e�can��[assume�that�0�is����Ga��Fbranc���h��Gp�Goin�t�for��Gall�small��t�,���that��A��has�a�p�Gole�at�0,���and�that�either�0�is�an����Gin���terior��branc�h��p�Goin�t�for��all�small��t��or�a�b�Goundary�branc���h�p�Goin�t��for�all�small����G�t�.��[Let�fܵm�f۲b�Ge�the�order�of�the�branc���h�p�Goin�t�f�for��t��M�=��N0.��[F��*�or�eac���h��i��N���m�,�k=consider����Gthe�Sset�of�Rsim���ultaneous�zero�Ges�of��z��p���^��i���5�and�the�three�comp�onen���ts�Rof�the�v�ector����Gfunction���@��8u=@�z�p��.�W+This�consists,�xb���y�the�structure�theorems�for�analytic�v��q�arieties����Gdiscussed���in�[�2��],��H�x�3,��Glo�Gcally�of�nitely�man���y�analytic�arcs�in�(�t;���z�p��)�space.��tBut����Gthese�g�arcs�g�m���ust�lie�on��z�V��=��0,�l�since�they�are�zero�Ges�of��z��p���^��i����.��rHence�either�this�set����Gconsists�rkof�rjthe�isolated�p�Goin���t��z�h(�=����t����=�0,�y�or�of�rk(a�p�Gortion�of��)�the��t�-axis.��Let��m����G�b�Ge��the��greatest�v��q�alue�for�whic���h�it�consists�of�the��t�-axis.�EThen�for��t��p�Gositiv���e,���the����Gorder���of�the�branc���h�p�Goin�t�at���0�is�exactly��m�.�S�Again�c�ho�Gosing�a�sligh�tly�dieren�t����Gorigin���of����t�,��gw���e�see�that�w���e�can�assume�the�order�of�the�branc���h�p�Goin�t���is��m��for����G�t������0.���W��*�e��next��wish�to�sho���w�that�w�e��can�assume�the�order�of�the�p�Gole�of��A����G�is���indep�Genden���t���of��t��also.�)%Let��U���b�e�an�analytic���function�with��u��.�=���/Re���h(�U��);�1all����Gsuc���h��dier�b�y��an�imaginary�constan�t.���If�the�constan�t��is�suitably�c�hosen,�>�w�e����Gha���v�e��U����t��m��=��g�A���@��8U���=@�z�p��,�.Qso��U����t��/��@�u=@���(�����z���	���=��g�A����(�@�u=@�z�p��)(�@�u=@���(�����z����V�)�=���������1�����&�fe�s����2�����
K@�W���A�,�.Qwhere��W�f{�is����Gthe�RMarea�RLelemen���t�of��u�.�p�Th�us��A�RL�can�b�Ge�written�as�a�quotien���t�of�functions,�R�eac���h����Gof��mwhic���h�is�real-analytic��lin��z�J�and��t�,��5sa�y��A���=��F��V=W�c��.�HzThe��mzero�of��l�W�<��at�the�origin����Gw���e��ha�v�e�just��seen�has�order�2�m�,�]indep�Genden�t�of��t�.�sHence�the�order��J��Dzof�the����Gp�Gole��Uof��V�A��at�the�origin�is�2�m��min���us�the�order�of�the�zero�of��F�7�at�the�origin.����GThis��morder��lis�certainly�constan���t�on��t��>��0��mfor�sucien���tly�small��t�;��eagain�c���hanging����Gthe�[�origin�of��t�,�]�w���e�ma�y�assume�it�is�constan�t�on��t�����0.���W��*�e�[�ha�v�e�no�w�ac�hiev�ed����Gour�M�rst�M�ob��8jectiv���e:�m�w�e�ha�v�e�M�sho�wn�that�w�e�M�can�assume�0�is�a�branc���h�p�Goin�t�M�for����Gall��small��t�,�Peither�an�in���terior�branc�h�p�Goin�t�for�all�small��t��or�a�b�Goundary�branc�h����Gp�Goin���t��for�all�small��t�;�1�that��the�order��m��of�this�branc�h�p�Goin�t�is�indep�Genden�t�of��t�;����Gand�UUthat��A��has�a�p�Gole�of�order��J�K��at�the�origin,�with��J��indep�Genden���t�of��t�.����!GAs�Zab�Go���v�e�Zlet��U�q:�b�Ge�analytic�with��u���=���Re���L(�U��);�\�let��K��/�=��U����t���t�and�Z�k���=���Re���L(�K���)�=����G�u����t���V�.�q�W��*�e�UUha���v�e��K�~4�=���A���@��8u=@�z���for�a�certain�meromorphic��A�.����!GW��*�e�?�no���w�giv�e�?�the�main�argumen�t.�j�W��*�e�distinguish�?�t�w�o�cases.�j�Case�1,�C��A��has����Ga�v�p�Gole�at�v�the�origin�of�order��J��U<��m�.�֛Case�2,�X�J��=���m�.�֜In�v�case�1,�Yw���e�ha�v�e�some�����/��^e���ݐT����a�The���6��"�theorem�about�minimal�surf��ra��ces�ypA�21���o�����T��Gp�Go���w�er�s�z��p���^��j��a�with�1��������j��G���m�s�in�the�expansion�of��K���,�z�hence�s�@��8k�P�=@�z�iS�=����@�k�=@�z�㵲has�sa����Gp�Go���w�er�"�of��z��p���^��j�g���1��㷲.�`�On�"�the�other�hand,�-
since��@��8u=@�z�7��=���O��(�z��p���^��m��	2�),�-	up�on�"�dieren���tiating����Gwith�UUresp�Gect�to��t��w���e�obtain��@��8k�P�=@�z�7��=���O��(�z��p���^��m��	2�),�UUcon���tradiction.����!GNo���w��Fconsider��Gcase�2.��W��*�e�ha�v�e��G�A��T�=��az��p���^���m���^�+��+�O�G�(�z��p���^���m�+1��i6�)�where��F�a��6�=��U0.��W��*�e����Gha���v�e��)�du=dz�仲=�t$�bz��p���^��m��
�J�+�~�O�G�(�z��p���^��m�+1��)5�)�+��O��(�t�),��where��*�b��)�is�a�constan���t�v�ector.��EW��*�e�ma�y����Gassume��that�the�normal�to��u���^��0���C�is��directed�along�the��Z���-axis,�Qand�that�the�image����Gof��8the��x�-axis�in�the�parameter�domain��9is�directed�along�the��X���-axis�in��X�Y�8�Z���-����Gspace.�[!In�dthat�case��b��is�a�escalar�m���ultiple�of�(1�;�����i;��0).�Changing�dthe�parameter����Gdomain���b���y�a�scale���factor,�Ηw�e�ma�y���assume��b���=�(1�;�����i;��0).�9�Then���when��t���=�0,�Θ�K�~4�=����G�A@��8u=@�z�7��=���a�(1�;�����i;��0)��V+��W�O�G�(�z�p��).�8W��*�e��ha���v�e��u����t���V�(0)��=��Re���Q(�K���(0))�=��Re��[�a�(1�;�����i;��0)]���6�=�0.����GThe���fact���that��u����t���V�(0)��6�=�0���is�the�only�use�w���e�will�mak���e�of�the�fact�that��A��has�a����Gp�Gole�UUof�order��m�.����!GAw���a�y���from�branc���h�p�Goin�ts,��and�for�small����t�,�w���e�ma�y�represen�t��u���^��t��C�in�the����G\normal�.Qbundle"�.Pof��u���^��0��|s�.�d�That�is,�6for�eac���h��z����0���IJwhic�h�.Qis�not�a�branc���h�p�Goin�t�.Pof��u���^��0��|s�,����Gw���e��can�nd�a�neigh�b�Gorho�o�d����������I��²of�(�z����0��|s�;����0)�in�(�z�p�;�t�)�space�and�real-analytic����Gfunctions�UU�and�� ��.�dened�on��8���I�7�suc���h�UUthat�� ���x\ֵu�����t���6��8���=��u�����0���S�+�� �[�N���in�UU����I�����X�]�(1)���� 
��Gwhere��*�N�ʔ�=��y�u���^���0��፴x����Q���n�u���^���0��፴y���·�=�j�u���^���0��፴x������m�u���^���0��፴y����j��*�is��)the�unit�normal�to��u���^��0��|s�.�DDieren���tiating�with����Gresp�Gect�UUto��t�,�and�remem���b�ering��k���=���u����t���V�,�w���e�ha�v�e����Q�,�k��w��8��+�(�u����x��Aĸ��)�Re���9(����t���V�)�+�(�u����y��g���)�Im����(����t���)��=�� ����t���N���:����G�Remem���b�Gering�UU�k���=���Re���Q(�A���du=dz�p��)�w�e�ha�v�e�� ����Re�����#QW���^�����*�˵A�8��������<$��33�du��33�w�fe
��	(֍�Q0dz������6���������^�����	�T�+�(�u����x��Aĸ��)�Re���9(����t���V�)�+�(�u����y��g���)�Im����(����t���)��=�� ����t���N���in�UU�8���I���.����N��GThe��left-hand�side��is�a�v���ector�tangen�t�to��u���^��t����at�(�z�p��).�|iThe��righ�t-hand�side�is����Gnormal��to��u���^��0��g��at��z�p��.�NZSince�(�z��)��=��z�[��when���t��=�0,�Pthe�only�p�Gossibilit���y�is�that�b�oth����Gv���ectors��are�0.�R�Th�us�� ����t��}^�is�iden�tically��zero.�R�In�tegrating�with�resp�Gect�to��t��w�e�nd����Gthat��b� �;�is�constan���t.�s�The�constan�t�is�zero�if��touc�hes�the��cb�Goundary��*�,���since�all����Gthe�jE�u���^��t��ha���v�e�the�jDsame�b�Goundary�curv���e.���Analytic�con�tin�uation�jDalong�a�c���hain�of����Gneigh���b�Gorho�o�ds��a�v�oiding��the�branc�h�p�Goin�ts��sho�ws�that��in�an�y�case��the�constan�t����Gis�UUzero;�so�� ��.�is�iden���tically�zero�and�(1)�simplies�to�� 
���j�u�����t���6��8���=��u�����0���|u�in�UU����I��=�:����!G�In���particular���all�the��u���^��t���ڲo�Gccup���y�the�same�t���w�o-dimensional�subset���of��R��ǟ�^��3���:�,��and����Glo�Gcally��a���w�a�y�from�the��branc�h�p�Goin�ts,�^�u���^��t��r��is�a�reparametrization�of��u����0��|s�.�O6Ho�w�ev�er,����Gthe��`argumen���t��ais�far�from�nished,��#b�Gecause�w���e�ha�v�en't�y�et�pro�v�ed��aor�assumed����Gthat�UUthe�branc���h�p�Goin�t�is�a�true�one.�����D�^e���ݐT����a�The���6��"�theorem�about�minimal�surf��ra��ces�ypA�22���o�����T��!GAn��example�is�instructiv���e�at�this�p�Goin�t,��"ev�en�though�not�strictly�needed�for����Gthe�UUpro�Gof.�q�Consider�the�minimal�surfaces����{v��u�����t��Ln�=���Re������Q���^������o�(1�;�����i;��0)�����<$���4�z��p���^��m�+1��b��8�t��33�w�fe+�
�	(֍�1�8���tz��p���r�m�+1���������.s���^�������Y��G�whic���h�form�an�example�of�a�forced�Jacobi�family��*�,�Ebut�with�non-Jordan�b�Gound-����Gary��*�,�aHnamely�^�the�^�circle��S������^��1��n�traced�out��m�?@�+�??1�times.��uIn�that�example,�aH�ma���y�b�Ge����Gconstructed�UUas�ab�Go���v�e|it�UUturns�out�to�b�e������}yI(�z�p��)��=�������^���������<$���j�z����^��m�+1��b�+�8�t��	Ai�w�fe+�
�	(֍�1�8�+��tz����r�m�+1���������6����^������;`ǟ�۱1�=�(�m�+1)��[n��;������G�whic���h���is�not�analytic���in�the�whole�unit�disk,��but�has�\branc�hes"�lik�e�(�z��p���^��2���\���R�t�)���^��1�=�2���ʲ.����!GThis�_kind�of�b�Geha���vior�dep�ends�on�_the�non-Jordan�nature�of�the�b�oundary��*�.����GAccording��to�[�7��],��Isince�the��b�Goundary�is�a�Jordan�curv���e,�the�branc���h��p�Goin�t��is�a����Gtrue�<�branc���h�<�p�Goin�t.�i�(See�esp�Gecially�<�Remark�6.22.2�of�this�reference�for�the�case����Gof��a�b�Goundary�branc���h��p�oin�t.)�%�Also��according�to��[�7��],�
�in�the�vicinit���y�of�a�true����Gin���terior��~branc�h�p�Goin�t�there��}is�an�arc�of�transv�ersal�self-in�tersection.�AThat�is,����Gthere��are�t���w�o��analytic�arcs�in�the��parameter�domain�terminating�at�the�origen����Gwhose���images�are���the�same,���and�along�whic���h�the�self-in���tersection�is�transv�ersal.����GAccording�UUto�[�8��],�the�same�is�true�of�a�b�Goundary�branc���h�p�oin���t.����!GSince���u����t���V�(0)�Kp�6�=�Kq0,�8�the���branc���h�p�Goin�t���do�es���not�remain�xed�in�space�as��t����G�c���hanges.�d�Since�-�the�-�surfaces��u���^��t���*�o�Gccup�y�-�the�same�t�w�o-dimensional�subset�-�of��R��ǟ�^��3���:�,����Gthe�y�p�Goin���t�y��u���^��t���V�(0)�(whic�h�y�is�the�image�of�the�branc���h�p�Goin�t)�y�lies�on��u���^��0��|s�.�ޠHo���w�ev�er,����G�u���^��t���V�(0)���is�distinguished�form�all�the�p�Goin���ts�of��õu���^��0��Y7�near�the�branc�h�p�Goin�t�b�y�the����Gfacts�Svthat�Sw(a)�it�lies�on�a�line�of�self-in���tersection�of�the�surface�and�(b)�the����Gself-in���tersection��at�that�p�Goin�t�is�not�transv�ersal,�$�since�the�normals�at�a�branc�h����Gp�Goin���t���all�p�oin���t���the�same�direction.�SbThis�is�a�con�tradiction���and�completes�the����Gpro�Gof�UUof�the�theorem.�����!G�3.�pThe��T�6��1-�theorem.�����!G�3.1.���Theorem�.����L��}'et�����b�e��a�r�e�al-analytic�Jor�dan��curve�in��R��ǟ�^��3��	:P�with�total����Gcurvatur��}'e������6��[��.���Then����c�annot�b�ound�innitely�many�minimal�surfac�es.����!G�Remark.��ʲJ.�eVC.�C.�Nitsc���he�eW[�10��
]�has�pro�v�ed�a�similar�theorem,��Vwith�the����Gsame�.-conclusion,�dbbut�with�.,the�additional�h���yp�Gothesis�that��do�Ges�not�b�Gound����Gan���y�UUminimal�surface�with�a�branc�h�p�Goin�t.����!G�Pr��}'o�of�.�SiLet����u��b�Ge�a�minimal�surface�b�ounded���b���y�.�SiBy�the�w�ork�of�B����ohme����G[�4��]���(see�also�[�2��],���x�3),���either��u����is�isolated�(in��C�����^��k��	AJ�top�Gology�for�ev���ery�large��k�P��)�or����Gthere�is��an�analytic�one-parameter�family�of�minimal�surfaces��u���^��t���U�dened�for����G0��.���/�t����t����0���ײfor��dsome��c�t����0��	7��>��0,��gsuc���h�that��u����t����is��cnot�a�conformal�direction.���If����Gev���ery��minimal��surface�b�Gounded�b���y��is�isolated,��then�b���y�the�compactness�of�����T�^e���ݐT����a�The���6��"�theorem�about�minimal�surf��ra��ces�ypA�23���o�����T��Gthe�Wset�Xof�minimal�surfaces�b�Gounded�b���y��in��C�����^��k����top�Gology�[�9��],�!Wthere�are�nitely����Gman���y�. minimal�surfaces�b�Gounded�.!b�y�.��(Hence,�dSif�the�theorem�is�false,�there����Gis�;2a�one-parameter�family��u���^��t�����of�minimal�;1surfaces�b�Gounded�b���y�.�#^According����Gto���Theorem���2.1,�it�cannot�b�Ge�the�case�that�for�all��t�,��u����t��4ֲis�a�forced�Jacobi����Gv���ector.��vLet�_���$=��u����t�����?��N��.��wBy�_�dieren�tiating�_�(�@��8u=@�z�p��)���^��2����with�resp�Gect�_�to��t�,�bw���e�nd����G(�@��8k�P�=@�z�p��)(�@�u=@�z��)��=�0,�!�where���k�(��=��u����t���V�.�\�This�is��the�k���ernel�equation�of��D��G��^��2��Ð�E����(�u�).����GHence�:m�u����t���²is�in�:l�K��er�GD����^��2��Ð�E����(�u�).�h�It�:mfollo���ws�from�Theorem�1.2�of�[�2��]�that��satises����G��������2�K��W�c����p=�0,��so���2���is�an�eigen���v��q�alue�of���������K��W�c���p�=��o0;�,�here�w���e�ha�v�e����Gc���hosen���the�origin�of��t��so���that��u���^���0��፴t���h:�is�not�forced�Jacobi,��hence��is�not�iden�tically����Gzero,�UUb���y�Theorem�1.2�of�[�2��].����!GBy�#'the�#&h���yp�Gothesis�on�the�total�curv��q�ature�of�,�V�together�with�the�Gauss-����GBonnet-Sasaki-Nitsc���he�UUform�ula�(see�[�2��],��x�2),�w�e�ha�v�e��y���n�P6��"�>���2�����+�8�2��[�M�O��+����c��Z���
�9��c�Z��8��K��W�7dx���dy����X�]�(1)�����A��Gwhere�.��M�Eʲis�the�sum�.�of�orders�of�in���terior�branc�h�p�Goin�ts,�6jplus�half�the�.�orders�of����Gthe�� b�Goundary�branc���h��!p�oin�ts,�Rand��!the�� in�tegral�is�o�v�er��!the�parameter�domain.����GNote��that�strict�inequalit���y�holds�in�(1)��ev�en�if�the�total�curv��q�ature�of��is����Gexactly�߱6��[ٲ,�Hsince�the�geo�Gdesic�curv��q�ature�(whic���h�o�ccurs�in�the�Gauss-Bonnet-����GSasaki-Nitsc���he�%�form�ula)�%�can�equal�the�total�curv��q�ature�of�,�Y�for��u��a�minimal����Gsurface,�*�only� ?if��lies� @in�a�plane�[�11��
],�and�in�this�case� @the�theorem�is�kno���wn.�`If����Gthere�_�is�_�a�b�Goundary�branc���h�p�oin���t,�bSits�_�order�is�necessarily�ev�en;�d�hence��M�vԲis�an����Gin���teger.����!GW��*�e�65shall�64no���w�pro�v�e�64that�either����^��0�����is�iden���tically�zero�or������min��
��(�u���^��0��|s�),�<nthe�least����Geigen���v��q�alue�~of�~��d���K��W�c����=�0,��#is�2.�*Since�~�u���^��0�����is�not�isolated,��#w���e�ha�v�e�~�����min�������2,����Gassuming�J���^��0��Ƒ�is�not�Jiden���tically�zero.��Since��is�an�eigenfunction�for�eigen���v��q�alue�2,����G��\is�orthogonal�to�the�rst�eigenfunction.���(F��*�or��[eigenfunctions,���orthogonalit���y����Gin�M��H���^�����1��l�0���	��inner�pro�Gduct�M�and�orthogonalit���y�in�inner�pro�Gduct�����īR�������R���B��K��W�c��� ��dx���dy����G�are���equiv��q�alen���t.)�t�Hence,�B�cannot�ha�v�e�just�one�sign,�Bsince�the�rst�eigen-����Gfunction�)(do�Ges�))ha���v�e�only�one�))sign�(as�discussed�in�[�2��],�^�x�2).��AIt�is�not�dicult����Gto�bav���erit�y�the�bbw�ell-kno�wn�fact�that��D��G��^��+��r-�=���f�z���2��D�Ν�:���(�z�p��)��>��0�g�,���where�ba�D��~�is����Gthe�s�parameter�domain,�{5and�similarly��D��G��^�����,�are�comp�Gosed�of�nitely�man���y�con-����Gnected�P�domains�b�Gounded�b���y�nitely�man�y�P�analytic�arcs.�pSSince�b�y�(1)�w�e�ha�v�e�����G���īR���f�����R��"���K��W�7dx���dy�IE<��l�4��[ٲ,�rthere�lTm���ust�exist�lUone�of�these�connected�domains��Q��for����Gwhic���h������īR���2R����R������K��W�7dx���dy�"�<���2��[ٲ.�I�In��this��domain,���has�only�one�sign�and�v��q�anishes����Gon�߉the�b�Goundary��*�.�dHence������min��
��(�Q�)��n=��m2,�where������min���(�Q�)�ߊis�the�least�eigen���v��q�alue����Gof����p���K��W�c����=��0�in��Q�,���=��0�on��@��8Q�.�:�But�this�con���tradicts��the�theorem����Gof���Barb�Gosa�and���do�Carmo,���according�to�whic���h�����īR���������R���
z���<�Q����K��W�7dx���dy�ח<�{��2����implies��
j���G�����min��
��(�Q�)��F�>��G�2.��OSee���[�2��],��8�x�2�for�discussion���of�Barb�Gosa-do�Carmo's�theorem,�and����G[�1��]�UUfor�pro�Gof.�����d2�^e���ݐT����a�The���6��"�theorem�about�minimal�surf��ra��ces�ypA�24���o�����T��!GNo���w��Usupp�Gose��u���^��t��=��is�an��Varbitrary�one-parameter�family�of�minimal�surfaces����Gb�Gounded�ub���y�u.���Let��k��7�=����u����t��+��=��t���^��a���p�h�,������=��u����t��~�����N��.���It�is�uimp�Gossible�that��is����Giden���tically���zero���in�b�Goth��z�k��and��t�,�$Sfor�then,�b���y���Theorem�1.2�of�[�2��],�$S�k�K��is�forced����GJacobi,��whic���h��Dcon�tradicts��ETheorem�2.1.��Hence�for��t��small�but�p�Gositiv���e,���u����t��c��is����Gnot�v@a�forced�v?Jacobi�direction,�~{and��is�not�iden���tically�zero.�ԈW��*�e�claim�that��u���^��t�����G�is��immersed��for��t��p�Gositiv���e.�U�If�not,��then��M��3����1�in�(1),��so�����īR���V ����R���s��K��W�7dx���dy�"�<��2��[ٲ.����GHence,�olb���y�7Barb�Gosa-do�7Carmo's�theorem,������min��
��(�u���^��t���V�)�?5�>�?6�2.��But�since�7���^��t���X�is�not����Giden���tically���zero,��2�is���an�eigen�v��q�alue,��con�tradiction.�*Hence��u���^��t���is�immersed���for��t����G�p�Gositiv���e.�O|Then��u�u���^��0��j�cannot�ha�v�e�an��tin�terior�branc�h�p�Goin�t,�b�y�Theorem��t5.1�of�[�2��].����GNo���w��there��are�three�p�Gossibilities:�O��u���^��0���A�is�immersed,��or�it�has�a�b�Goundary�branc���h����Gp�Goin���t�,and��h���^��0�����is�forced�Jacobi,�(gor�it�has�a�b�oundary�+branc���h�p�oin���t�and��h���^��0�����is�not����Gforced�?Jacobi.�.�The�?last�p�Gossibilit���y�con�tradicts�?Theorem�7.2�of�[�3��].�.�Supp�Gose����Gthe��second��p�Gossibilit���y�holds.�]�Then�b�y�theorem�8.1��of�[�3��],�%�the�b�Goundary�branc���h����Gp�Goin���t���of��u���^��0��T�has�order���;�4,��Bso���M����in�(1)�satises��M�R��:��2,��Ccon�tradiction.�BiHence����G�u���^��0���Ȳis�UUimmersed.����!GW��*�e��ha���v�e��no�w�sho�wn�the��follo�wing:�O]Ev�ery�one-parameter�family��of�minimal����Gsurfaces��Eb�Gounded��Db���y��consists,��for�small��t�,�of��Dimmersed�surfaces�with������min����=��2����Gfor��<�t��p�Gositiv���e.��}It�is�also�true�that��=�����min�����=�>�2�for��t�>��=�0,�.�as�w���e�no�w�pro�v�e:����GSince�޵h���^��0���R�is�not�forced�Jacobi,�ʁw���e�ha�v�e����=����t���^��n��q~� �۷�for�some�in�teger�ߵn�,�ʀwhere����G� ��[ٟ�^��0��	}V�is��
not��	iden���tically�zero.�`�Since�for��t��p�Gositiv�e,����has�only��	one�sign�(since����G�����min���S�=��P2),�?it��wfollo���ws��vthat�� �PP�has�only�one�sign,�ev���en�for��t��O�=�0;�Dsince��w� �PP�is�an����Geigenfunction���for���the�eigen���v��q�alue�2,���it�follo���ws�that������min���D�=�@2�when��t�@�=�0.��Th���us����Gev���ery���one-parameter�family�of�minimal�surfaces�b�Gounded�b�y��consists�en�tirely����Gof��immersed�surfaces�with������min�����=��{2.�M�W��*�e�ma���y�no�w�emplo�y�T��*�omi's�argumen�t����G[�12��
]��[(see�also��\the�pro�Gof�of�Theorem�5.1�of�[�2��])�to�reac���h�a�con�tradiction.�a�That����Gcompletes�UUthe�pro�Gof�of�Theorem�3.1.��!č�G���N�ffcmbx12�References�������H�[1]���&��J.��Barb�Gosa�and�M.��	do�Carmo,���Stable�:minimal�;surfac��}'es�,�Bull.��Amer.�Math.����&��So�Gc.,�UU�80��(1974),�581{583.������H[2]���&��M.��@Beeson,��D�Some� �r��}'esults� �on�niteness�in�Plate��}'au's�pr�oblem,�7�Part�I�,��@Math.����&��Zeitsc���hrift�UU�175��(1980),�103-123.������H[3]���&��M.�uOBeeson,���Some���r��}'esults�on�niteness���in�Plate�au's�pr�oblem,��Part�II�,�uOMath.����&��Zeitsc���hrift�UU�181��(1982),�1-30.������H[4]���&��R.��pB����ohme,�6�Die��Zusammenhangskomp��}'onenten��der�L���osungen�analytischer����&��Plate��}'aupr�obleme�,�UUMath.�Zeitsc���hrift��133�,�31-40�(1973).�����uڠ^e���ݐT����a�The���6��"�theorem�about�minimal�surf��ra��ces�ypA�25���o�����T����H[5]���&��B����ohme,�s�R.,�New�:�results�:�on�the�classical�problem�of�Plateau�on�the�ex-����&��istence�E�of�man���y�E�solutions.�S���Geminaire�Bourbaki�34�E�ann���Gee��579��(1981{82)����&��1{20.������H[6]���&��R.�ucB����ohme�and�A.�udJ.�T��*�rom���ba,��f�The���index�the��}'or�em���for���classic�al�minimal����&��surfac��}'es�,�UUAnnals�of�Math.,��113��(1981),�447{499.������H[7]���&��R.���Gulliv���er,��R.�Osserman,�and���H.�Ro���yden,��A��	the��}'ory��of��br�anche�d�immer-����&��sions���of�surfac��}'es�,�UUAmer.�J.�Math.,�95��(1973),�750{812.������H[8]���&��R.�
?Gulliv���er�
@and�Lesley��*�,��F.,���On�Q�b��}'oundary�br�anch�Q�p�oints�of�minimizing�sur-����&��fac��}'es�,�UUArc���h.�Rational�Mec�h.�Anal.,��52��(1973),20{25.������H[9]���&��S.���Hildebrandt,�����x�����Ub��}'er��das�R�andverhalten��von�Minimal
���achen�,��Math.���Ann.,����&���165�UU�(1966),�1{18.������G[10]���&��J.��VC.�C.�Nitsc���he,�~�Contours��%b��}'ounding��&only�nitely�many�solutions�of����&��Plate��}'au's���pr�oblem�,���in���the�pro�Gceedings���of�a�conference�dedicated�to����&��I.�iN.�V��*�ekua,�npublished�in�the�USSR.�A�isummary�of�this�article�app�Geared����&��in��u�Minimal���Submanifolds�and���Ge��}'o�desics,�%Pr�o�c.���Jap�an-US���seminar,�T��;�okyo,����&��1978�,�UUNorth-Holland,�Amsterdam�(1979).������G[11]���&��J.���C.�C.���Nitsc���he,����A�Փnew�դuniqueness�գthe��}'or�em�for�minimal�surfac�es�,���Arc���h.����&��Rat.�UUMec���h.�Anal.,��52��(1973),�319{329.������G[12]���&��F.�=�T��*�omi,�Bk�On�~&the�~'nite�solvability�of�Plate��}'au's�pr�oblem�,�Bjin:�e�Geometry�=�and����&��T��*�op�Gology�,��Rio��de�Janeiro,��July��1976,�pp.��679{695.�Springer�Lecture�Notes����&��in�UUMathematics�597,�Springer-V��*�erlag,�Berlin-Heidelb�Gerg-New�Y�ork,�1977.������G[13]���&��A.��pJ.�T��*�rom���ba,��On�9�the�9�numb��}'er�of�simply�c��}'onne�cte�d�minimal�9�surfac�es�sp�an-����&��ning���a�curve�,�UUMem.�Am.�Math.�So�Gc.,��12��No.�194�(1977).����GReceiv���ed�UUAugust�2,�1982.����G�San��Jose�St��UTa�te��University����GSan��Jose,�CA�95192������:���;�^ee�|	���N�ffcmbx12��':

cmti10��Aa�cmr6�|{Ycmr8��"V

cmbx10��-�

cmcsc10���g�ffcmmi12��-�ff
cmcsc10�X�Qffcmr12��-�	
cmcsc10�o���		cmr9�
!",�

cmsy10�O!�cmsy7�
�b>

cmmi10�	0e�rcmmi7�K�`y

cmr10�ٓ�Rcmr7���u

cmex10��V����

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists