Sindbad~EG File Manager
NEAE
EEEAEC
EEEAEB
EEEAED
NECB
NEAB
NCABC
NCEAB
NCEAC
BEAEH
BEBHC
ANBEAEF+EEEFAE lemma:extension
BEAEF
EEEFAE
EEAEEF lemma:congruencesymmetric
NCBAE lemma:NCorder
NCAEB lemma:NCorder
TRBAE defn:triangle
TREAB defn:triangle
ISEAB defn:isosceles
EAEABEBA proposition:05
%Therefore the sum of the angles EAB and EBA is double the angle EAB. I.32
ASEBABAEBEF proposition:32
EAEBAEAB lemma:equalanglessymmetric
EAEABBAE lemma:ABCequalsCBA
EAEBABAE lemma:equalanglestransitive
DABEFEBA lemma:sumofequalsisdouble
%Therefore the angle BEF, is also double the angle EAB.
NCCAE lemma:NCorder
NCAEC lemma:NCorder
TRCAE defn:triangle
TREAC defn:triangle
ISEAC defn:isosceles
EAEACECA proposition:05
ASECACAECEF proposition:32
EAECAEAC lemma:equalanglessymmetric
EAEACCAE lemma:ABCequalsCBA
EAECACAE lemma:equalanglestransitive
DACEFECA lemma:sumofequalsisdouble
%For the same reason the angle FEC is also double the angle EAC.
% Now we have to use point H that Euclid didn't mention
EQBB cn:equalityreflextive
RAEBB lemma:ray4
EQCC cn:equalityreflexive
RAECC lemma:ray4
RAEHF lemma:ray4
RAEFH lemma:ray4
EABEFBEH lemma:equalangleshelper
EAFECHEC lemma:equalangleshelper
EABEHBEF lemma:equalangelssymmetric
EAHECFEC lemma:equalanglessymmetric
ASBEFBEBBEC defn:anglesum
RAABB lemma:ray4
RAACC lemma:ray4
RAAHF lemma:ray4
RAAFH lemma:ray4
EABAHBAF lemma:equalangleshelper
EACAHCAF lemma:equalangleshelper
EABAFBAH lemma:equalanglessymmetric
EACAFCAH lemma:equalanglessymmetric
ASBAFFACBAC defn:anglesum
case 1: ASBAFFACBAC
% and then we can show also
ASBEFFECBEC
% and thus since AEBEFFEC also
ASBEFBEFBEC
ASBAFBACBAC
% and hence
DABECBEF lemma:doublesum
Again let another straight line be inflected, and let there be another angle BDC. Join DE and produced it to G.
Similarly then we can prove that the angle GEC is double the angle EDC, of which the angle GEB is double the angle EDB. Therefore the remaining angle BEC is double the angle BDC.
DABECBDC
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists