Sindbad~EG File Manager
NEAE
EEEAEC
EEEAEB
EEEAED
NECB
NEAB
NCABC
NCEAB
NCEAC
ANBEAEF+EEEFAE lemma:extension
BEAEF
EEEFAE
EEAEEF lemma:congruencesymmetric
NCBAE lemma:NCorder
NCAEB lemma:NCorder
TRBAE defn:triangle
TREAB defn:triangle
ISEAB defn:isosceles
EAEABEBA proposition:05
%Therefore the sum of the angles EAB and EBA is double the angle EAB. I.32
ASEBABAEBEF proposition:32
EAEBAEAB lemma:equalanglessymmetric
EAEABBAE lemma:ABCequalsCBA
EAEBABAE lemma:equalanglestransitive
DABEFEBA lemma:sumofequalsisdouble
%Therefore the angle BEF, is also double the angle EAB.
NCCAE lemma:NCorder
NCAEC lemma:NCorder
TRCAE defn:triangle
TREAC defn:triangle
ISEAC defn:isosceles
EAEACECA proposition:05
ASECACAECEF proposition:32
EAECAEAC lemma:equalanglessymmetric
EAEACCAE lemma:ABCequalsCBA
EAECACAE lemma:equalanglestransitive
DACEFECA lemma:sumofequalsisdouble
%For the same reason the angle FEC is also double the angle EAC.
% We need to argue by cases, as Byrne does, whether center E
% is in the interior of angle BAC or not. If it is, then
case 1: ASBAFFACBAC
% and then we can show also
ASBEFFECBEC
% and thus since AEBEFFEC also
ASBEFBEFBEC
ASBAFBACBAC
% and hence
DABECBEF lemma:doublesum
Again let another straight line be inflected, and let there be another angle BDC. Join DE and produced it to G.
Similarly then we can prove that the angle GEC is double the angle EDC, of which the angle GEB is double the angle EDB. Therefore the remaining angle BEC is double the angle BDC.
DABECBDC
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists