Sindbad~EG File Manager
SQABCD
ANEEABCD+EEABBC+EEABDA+RRDAB+RRABC+RRBCD+RRCDA defn:square
EEABDA
RRDAB
RRCDA
NCDAB lemma:rightangleNC
NEDA lemma:NCdistinct
ANBEDAR+EEARDA lemma:extension
BEDAR
BERAD axiom:betweennesssymmetry
NEAB lemma:NCdistinct
CODAR defn:collinear
EQAA cn:equalityreflexive
CODAA defn:collinear
NERA lemma:betweennotequal
NCRAB lemma:NChelper
NCABR lemma:NCorder
ANSQABcE+OSEABR+PGABcE proposition:46
SQABcE
OSEABR
PGABcE
ANEEABcE+EEABBc+EEABEA+RREAB+RRABc+RRBcE+RRcEA defn:square
RREAB
RRcEA
RRDAB
CORAD defn:collinear
CODAR lemma:collinearorder
RRRAB lemma:collinearright
RRBAR lemma:8.2
OSEBAR lemma:oppositesideflip
BEEAR lemma:righttogether
BERAE axiom:betweennesssymmetry
RAADE defn:ray
EEABEA defn:square
EEEAAB lemma:congruencesymmetric
EEEADA lemma:congruencetransitive
EEAEAD lemma:congruenceflip
NEAD lemma:betweennotequal
EQDD cn:equalityreflexive
RAADD lemma:ray4
EQED lemma:layoffunique
PGABcD cn:equalitysub
EEABCD defn:square
SQABcD cn:equalitysub
EEABcD defn:square
EEcDAB lemma:congruencesymmetric
EEcDCD lemma:congruencetransitive
EEABBC defn:square
EEABBc defn:square
EEBcAB lemma:congruencesymmetric
EEBcBC lemma:congruencetransitive
EEcBCB lemma:congruenceflip
RRBCD defn:square
RRBcD defn:square
EABcDBCD lemma:Euclid4
ANEEBDBD+EAcBDCBD+EAcDBCDB proposition:04
EAcDBCDB
ANMIAmc+MIBmD lemma:diagonalsbisect
MIAmc
MIBmD
ANBEAmc+EEAmmc defn:midpoint
ANBEBmD+EEBmmD defn:midpoint
BEAmc
BEBmD
EEcDCD
EACDBcDB lemma:equalanglessymmetric
EEDmDm cn:congruencereflexive
EEDcDC lemma:congruenceflip
NCCDA lemma:rightangleNC
RRcDA cn:equalitysub
NCcDA lemma:rightangleNC
NCAcD lemma:NCorder
EQcc cn:equalityreflexive
COAcc defn:collinear
COAmc defn:collinear
COAcm lemma:collinearorder
NEmc lemma:betweennotequal
NCmcD lemma:NChelper
NCcDm lemma:NCorder
COCDm assumption
COBmD defn:collinear
COmDB lemma:collinearorder
COmDC lemma:collinearorder
NEmD lemma:betweennotequal
CODBC lemma:collinear4
COBCD lemma:collinearorder
NCBCD lemma:rightangleNC
NCCDm reductio
EEDcDC
EAcDBCDB lemma:equalanglessymmetric
BEDmB axiom:betweennesssymmetry
NEDB lemma:betweennotequal
RADBm lemma:ray4
EQCC cn:equalityreflexive
NEDC lemma:NCdistinct
RADCC lemma:ray4
EAcDBCDm lemma:equalangleshelper
EACDmcDB lemma:equalanglessymmetric
EQcc cn:equalityreflexive
NEDc lemma:NCdistinct
RADcc lemma:ray4
EACDmcDm lemma:equalangleshelper
EAcDmCDm lemma:equalanglessymmetric
EEcmCm proposition:04
EEmcmC lemma:congruenceflip
EEAmAm cn:congruencereflexive
EEDADA cn:congruencereflexive
RRcDA cn:equalitysub
RRADc lemma:8.2
RRADC lemma:8.2
EAADCADc lemma:Euclid4
EEDCDc lemma:congruencesymmetric
EEACAc proposition:04
EEAcAC lemma:congruencesymmetric
BEAmc
BEAmC lemma:betweennesspreserved
NEAm lemma:betweennotequal
RAAmc lemma:ray4
RAAmC lemma:ray4
EQcC lemma:layoffunique
PGABCD cn:equalitysub
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists