Sindbad~EG File Manager
PRABCD
ANNEAB+NECD+COABa+COABb+NEab+COCDc+COCDd+NEcd+NOMEABCD+BEaed+BEceb defn:parallel
COABb
NEab
COCDc
COCDd
NEcd
NOMEABCD
NEAB
NECD
BEaed
BEceb
NEba lemma:inequalitysymmetric
NEeb lemma:betweennotequal
MEabCD assumption
ANNEab+NECD+COabR+COCDR defn:meet
COabR
COCDR
CObaR lemma:collinearorder
COABa
COABb
COBab lemma:collinear4
CObaB lemma:collinearorder
COaBR lemma:collinear4
COaBA lemma:collinearorder
cases COABR:NEaB|EQaB
case 1:NEaB
COBRA lemma:collinear4
COABR lemma:collinearorder
qedcase
case 2:EQaB
COBAa lemma:collinearorder
COBAb lemma:collinearorder
NEBA lemma:inequalitysymmetric
COAab lemma:collinear4
CObaA lemma:collinearorder
CObaR
COaAR lemma:collinear4
COaAB lemma:collinearorder
NEAa cn:equalitysub
NEaA lemma:inequalitysymmetric
COARB lemma:collinear4
COABR lemma:collinearorder
qedcase
COABR cases
COCDR
ANNEAB+NECD+COABR+COCDR
MEABCD defn:meet
NOMEABCD
NOMEabCD reductio
ANBEebP+EEbPeb lemma:extension
BEebP
BEPbe axiom:betweennesssymmetry
BEbec axiom:betweennesssymmetry
BEPbc lemma:3.7b
BEcbP axiom:betweennesssymmetry
COadP assumption
COaed defn:collinear
COade lemma:collinearorder
NEad lemma:betweennotequal
COdPe lemma:collinear4
COePd lemma:collinearorder
COebP defn:collinear
COePb lemma:collinearorder
NEeP lemma:betweennotequal
COPdb lemma:collinear4
COdPb lemma:collinearorder
COdPa lemma:collinearorder
EQdP assumption
COcbP defn:collinear
COcbd cn:equalitysub
CObec defn:collinear
COcbe lemma:collinearorder
NEcb lemma:betweennotequal
CObde lemma:collinear4
COdea lemma:collinearorder
COdeb lemma:collinearorder
NEed lemma:betweennotequal
NEde lemma:inequalitysymmetric
COeab lemma:collinear4
COaed defn:collinear
COead lemma:collinearorder
NEae lemma:betweennotequal
NEea lemma:inequalitysymmetric
COabd lemma:collinear4
COCDd
MEabCD defn:meet
NOMEabCD
NEdP reductio
COPba lemma:collinear4
COPbc defn:collinear
NEbP lemma:betweennotequal
NEPb lemma:inequalitysymmetric
CObac lemma:collinear4
CObac
COabc lemma:collinearorder
MEabCD defn:meet
NOMEabCD
NCadP reductio
ANBEPMd+BEabM postulate:Pasch-outer
BEPMd
BEabM
BEPbc axiom:betweennesssymmetry
COabM defn:collinear
COABa
COABb
COBab lemma:collinear4
CObaB lemma:collinearorder
CObaM lemma:collinearorder
NEba lemma:inequalitysymmetric
COaBM lemma:collinear4
COaBA lemma:collinearorder
cases COABM:NEaB|EQaB
case 1:NEaB
COBMA lemma:collinear4
COABM lemma:collinearorder
qedcase
case 2:EQaB
NEAa cn:equalitysub
COAab cn:equalitysub
CObaA lemma:collinearorder
CObaM
COaAM lemma:collinear4
COaAB lemma:collinearorder
NEaA lemma:inequalitysymmetric
COAMB lemma:collinear4
COABM lemma:collinearorder
qedcase
COABM cases
BEcbP axiom:betweennesssymmetry
BEdMP axiom:betweennesssymmetry
COABc assumption
MEABCD defn:meet
NCABc reductio
COABd assumption
MEABCD defn:meet
NCABd reductio
ANCOABb+COABM+BEcbP+BEdMP+NCABc+NCABd
SScdAB defn:sameside
MEABcd assumption
ANNEAB+NEcd+COABR+COcdR defn:meet
COABR
COCDc
COCDd
CODcd lemma:collinear4
CODCc lemma:collinearorder
CODCd lemma:collinearorder
NEDC lemma:inequalitysymmetric
COCcd lemma:collinear4
COcdC lemma:collinearorder
COcdD lemma:collinearorder
COcdR
COCDR lemma:collinear5
MEABCD defn:meet
NOMEABCD
NOMEABcd reductio
ANNEAB+NEcd+NOMEABcd+SScdAB
TPABcd defn:tarski_parallel
COCDc
COCDd
EQCC cn:equalityreflexive
COCDC defn:collinear
COcdC lemma:collinear5
NOTPABCD assumption
NEDC lemma:inequalitysymmetric
NECd assumption
TPABCd lemma:parallelcollinear
TPABdC lemma:tarskiparallelflip
COdCD lemma:collinearorder
TPABDC lemma:parallelcollinear
TPABCD lemma:tarskiparallelflip
EQCd reductio
TPABcC cn:equalitysub
COcCD lemma:collinearorder
TPABDC lemma:parallelcollinear
TPABCD lemma:tarskiparallelflip
TPABCD reductio
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists