Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/proofs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/proofs/paralleldef2B.prf

PRABCD
ANNEAB+NECD+COABa+COABb+NEab+COCDc+COCDd+NEcd+NOMEABCD+BEaed+BEceb defn:parallel
COABb
NEab
COCDc
COCDd
NEcd
NOMEABCD
NEAB
NECD
BEaed
BEceb
NEba lemma:inequalitysymmetric
NEeb lemma:betweennotequal
MEabCD assumption
 ANNEab+NECD+COabR+COCDR defn:meet
 COabR
 COCDR
 CObaR lemma:collinearorder
 COABa 
 COABb
 COBab lemma:collinear4
 CObaB lemma:collinearorder
 COaBR lemma:collinear4
 COaBA lemma:collinearorder
 cases COABR:NEaB|EQaB
  case 1:NEaB
   COBRA lemma:collinear4
   COABR lemma:collinearorder
  qedcase
  case 2:EQaB
   COBAa lemma:collinearorder
   COBAb lemma:collinearorder
   NEBA  lemma:inequalitysymmetric
   COAab lemma:collinear4
   CObaA lemma:collinearorder
   CObaR
   COaAR lemma:collinear4
   COaAB lemma:collinearorder
   NEAa  cn:equalitysub
   NEaA  lemma:inequalitysymmetric
   COARB lemma:collinear4
   COABR lemma:collinearorder
  qedcase
 COABR cases
 COCDR
 ANNEAB+NECD+COABR+COCDR
 MEABCD  defn:meet
 NOMEABCD
NOMEabCD reductio
ANBEebP+EEbPeb  lemma:extension
BEebP
BEPbe  axiom:betweennesssymmetry
BEbec  axiom:betweennesssymmetry
BEPbc  lemma:3.7b
BEcbP  axiom:betweennesssymmetry
COadP  assumption
 COaed defn:collinear
 COade  lemma:collinearorder
 NEad lemma:betweennotequal
 COdPe lemma:collinear4
 COePd lemma:collinearorder
 COebP  defn:collinear
 COePb lemma:collinearorder
 NEeP lemma:betweennotequal
 COPdb lemma:collinear4
 COdPb lemma:collinearorder
 COdPa lemma:collinearorder
 EQdP assumption
  COcbP  defn:collinear
  COcbd cn:equalitysub
  CObec defn:collinear
  COcbe lemma:collinearorder
  NEcb lemma:betweennotequal
  CObde lemma:collinear4
  COdea  lemma:collinearorder
  COdeb  lemma:collinearorder
  NEed lemma:betweennotequal
  NEde lemma:inequalitysymmetric
  COeab lemma:collinear4
  COaed defn:collinear
  COead lemma:collinearorder
  NEae lemma:betweennotequal
  NEea lemma:inequalitysymmetric
  COabd  lemma:collinear4
  COCDd
  MEabCD defn:meet
  NOMEabCD
 NEdP  reductio
 COPba lemma:collinear4
 COPbc defn:collinear
 NEbP lemma:betweennotequal
 NEPb  lemma:inequalitysymmetric
 CObac  lemma:collinear4
 CObac
 COabc lemma:collinearorder
 MEabCD defn:meet
 NOMEabCD
NCadP  reductio
ANBEPMd+BEabM  postulate:Pasch-outer
BEPMd
BEabM
BEPbc axiom:betweennesssymmetry
COabM  defn:collinear
COABa
COABb
COBab lemma:collinear4
CObaB lemma:collinearorder
CObaM lemma:collinearorder
NEba lemma:inequalitysymmetric
COaBM lemma:collinear4
COaBA lemma:collinearorder
cases COABM:NEaB|EQaB
 case 1:NEaB
  COBMA lemma:collinear4
  COABM lemma:collinearorder
 qedcase
 case 2:EQaB
  NEAa  cn:equalitysub
  COAab cn:equalitysub
  CObaA  lemma:collinearorder
  CObaM
  COaAM lemma:collinear4
  COaAB  lemma:collinearorder
  NEaA   lemma:inequalitysymmetric
  COAMB  lemma:collinear4
  COABM  lemma:collinearorder
 qedcase
COABM cases
BEcbP  axiom:betweennesssymmetry
BEdMP  axiom:betweennesssymmetry 
COABc assumption
 MEABCD defn:meet
NCABc reductio
COABd  assumption
 MEABCD defn:meet
NCABd reductio
ANCOABb+COABM+BEcbP+BEdMP+NCABc+NCABd
SScdAB   defn:sameside
MEABcd assumption
 ANNEAB+NEcd+COABR+COcdR defn:meet
 COABR
 COCDc
 COCDd
 CODcd  lemma:collinear4
 CODCc  lemma:collinearorder
 CODCd  lemma:collinearorder
 NEDC  lemma:inequalitysymmetric
 COCcd  lemma:collinear4
 COcdC  lemma:collinearorder
 COcdD  lemma:collinearorder
 COcdR  
 COCDR  lemma:collinear5
 MEABCD  defn:meet
 NOMEABCD
NOMEABcd reductio
ANNEAB+NEcd+NOMEABcd+SScdAB
TPABcd  defn:tarski_parallel
COCDc
COCDd
EQCC  cn:equalityreflexive
COCDC  defn:collinear
COcdC  lemma:collinear5
NOTPABCD assumption
 NEDC  lemma:inequalitysymmetric
 NECd assumption
  TPABCd  lemma:parallelcollinear
  TPABdC  lemma:tarskiparallelflip  
  COdCD  lemma:collinearorder
  TPABDC lemma:parallelcollinear
  TPABCD lemma:tarskiparallelflip
 EQCd reductio
 TPABcC cn:equalitysub
 COcCD  lemma:collinearorder
 TPABDC lemma:parallelcollinear
 TPABCD lemma:tarskiparallelflip 
TPABCD reductio



Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists