Sindbad~EG File Manager
PGABCD
PRABCD defn:parallelogram
PRADBC defn:parallelogram
ANNEAB+NECD+COABa+COABb+NEab+COCDc+COCDd+NEcd+NOMEABCD+BEamd+BEcmb defn:parallel
NEAB
NECD
NOMEABCD
NOMEADBC defn:parallel
PRCDAB lemma:parallelsymmetric
TPCDAB lemma:paralleldef2B
SSABCD defn:tarski_parallel
EQDD cn:equalityreflexive
CODCD defn:collinear
EQAD assumption
CODCA cn:equalitysub
COCDA lemma:collinearorder
EQAA cn:equalityreflexive
COABA defn:collinear
MEABCD defn:meet
NEAD reductio
ANBEADE+EEDEAD lemma:extension
BEADE
CODCA assumption
EQAA cn:equalityreflexive
COABA defn:collinear
COCDA lemma:collinearorder
MEABCD defn:meet
NOMEABCD defn:parallel
NCDCA reductio
OSADCE defn:oppositeside
SSABCD
SSBADC lemma:samesidesymmetric
OSBDCE lemma:planeseparation
ANBEBFE+CODCF+NCDCB defn:oppositeside
BEBFE
CODCF
NCDCB
BEEFB axiom:betweennesssymmetry
BEEDA axiom:betweennesssymmetry
COEDA defn:collinear
NEED lemma:betweennotequal
NEEA lemma:betweennotequal
EQBC assumption
CODBC defn:collinear
CODCB lemma:collinearorder
NEBC reductio
ANBEBCS+EECSBC lemma:extension
BEBCS
BESCB axiom:betweennesssymmetry
COSCB defn:collinear
NESB lemma:betweennotequal
NECB lemma:betweennotequal
MEEASB assumption
ANNEEA+NESB+COEAR+COSBR defn:meet
NEEA
NESB
COEAR
COSBR
COBCS defn:collinear
COSBC lemma:collinearorder
cases COBCR:EQBR|NEBR
case 1:EQBR
COBCR defn:collinear
qedcase
case 2:NEBR
COBRC lemma:collinear4
COBCR lemma:collinearorder
qedcase
COBCR cases
COADE defn:collinear
COEAD lemma:collinearorder
NEAD lemma:betweennotequal
COADR lemma:collinear4
ANNEAD+NEBC+COADR+COBCR
MEADBC defn:meet
NOMEEASB reductio
BEDFC lemma:collinearbetween
BECFD axiom:betweennesssymmetry
NEAE lemma:betweennotequal
NEEA lemma:inequalitysymmetric
NEBS lemma:betweennotequal
NESB lemma:inequalitysymmetric
COEAC assumption
COBCS defn:collinear
COSBC lemma:collinearorder
ANNEEA+NESB+COEAC+COSBC
MEEASB defn:meet
NOMEEASB
NCEAC reductio
ANBECHA+BEEFH postulate:Pasch-outer
BECHA
BEEFH
COEFH defn:collinear
COEFB defn:collinear
NEEF lemma:betweennotequal
NEFE lemma:inequalitysymmetric
COFEH lemma:collinearorder
COFEB lemma:collinearorder
COEHB lemma:collinear4
BEAHC axiom:betweennesssymmetry
NEAE
ANBEAER+EEERAE lemma:extension
BEAER
COAER defn:collinear
NEAE lemma:betweennotequal
NEAR lemma:betweennotequal
NECB lemma:inequalitysymmetric
ANBECBT+EEBTCB lemma:extension
BECBT
MEARTC assumption
ANNEAR+NETC+COARp+COTCp defn:meet
NEAR
NETC
COARp
COTCp
COCBT defn:collinear
COADE defn:collinear
EQAA cn:equalityreflexive
COARA defn:collinear
COEAD lemma:collinearorder
COAER defn:collinear
COEAR lemma:collinearorder
NEAD lemma:betweennotequal
COADR lemma:collinear4
COARD lemma:collinearorder
COADp lemma:collinear5
COBTC lemma:collinearorder
COTCB lemma:collinearorder
NECT lemma:betweennotequal
NETC lemma:inequalitysymmetric
COCBp lemma:collinear4
COBCp lemma:collinearorder
ANNEAD+NEBC+COADp+COBCp
MEADBC defn:meet
NOMEADBC
NOMEARTC reductio
BETBC axiom:betweennesssymmetry
COTBC defn:collinear
NETC lemma:betweennotequal
NEBC lemma:betweennotequal
BEAHC
COEBH lemma:collinearorder
BEEHB lemma:collinearbetween
BEBHE axiom:betweennesssymmetry
BEADE
COBEA assumption
COADE defn:collinear
COEAD lemma:collinearorder
COEAB lemma:collinearorder
COADB lemma:collinear4
EQBB cn:equalityreflexive
COBCB defn:collinear
ANNEAD+NEBC+COADB+COBCB
MEADBC defn:meet
NCBEA reductio
ANBEBMD+BEAMH postulate:Pasch-inner
BEBMD
BEAMH
BEAHC axiom:betweennesssymmetry
BEAMC lemma:3.6b
ANBEAMC+BEBMD
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists