Sindbad~EG File Manager
NCABC
NCDEF
NOEAABCDEF
NOAODEFABC
EQBA assumption
EQAB lemma:equalitysymmetric
COABC defn:collinear
NEBA reductio
EQBC assumption
COABC defn:collinear
NEBC reductio
COBAC assumption
COABC lemma:collinearorder
NCBAC reductio
ANRABAJ+EAGBJDEF+SSGCBA proposition:23C
RABAJ
EAGBJDEF
SSGCBA
NCBAG defn:sameside
EQBG assumption
COBAG defn:collinear
NEBG reductio
EQAG assumption
COBAG defn:collinear
NEAG reductio
EADEFGBJ lemma:equalanglessymmetric
RABJA lemma:ray5
EQGG cn:equalityreflexive
RABGG lemma:ray4
EADEFGBA lemma:equalangleshelper
NCGBA lemma:equalanglesNC
COABG assumption
COBAG lemma:collinearorder
NCABG reductio
EAGBADEF lemma:equalanglessymmetric
EAABGGBA lemma:ABCequalsCBA
EAABGDEF lemma:equalanglestransitive
COABG assumption
COGBA lemma:collinearorder
NCABG reductio
EQGA assumption
EQAG lemma:equalitysymmetric
COABG defn:collinear
NEGA reductio
ANBEGAP+EEAPGA lemma:extension
BEGAP
EQAA cn:equalityreflexive
COBAA defn:collinear
COBAG assumption
COGBA lemma:collinearorder
NCBAG reductio
SSCGBA lemma:samesidesymmetric
OSGBAP defn:oppositeside
OSCBAP lemma:planeseparation
ANBECRP+COBAR+NCBAC defn:oppositeside
BECRP
BEPRC axiom:betweennesssymmetry
NCBAC
cases AOABCDEF:OSGBCA|NOOSGBCA
case 1:OSGBCA
ANBEGHA+COBCH+NCBCG defn:oppositeside
BEGHA
COBCH
BEAHG axiom:betweennesssymmetry
RABAA lemma:ray4
RABGG
COABH assumption
EQBH assumption
BEABG cn:equalitysub
COABG defn:collinear
COGBA lemma:collinearorder
NEBH reductio
NEHB lemma:inequalitysymmetric
COHBA lemma:collinearorder
COHBC lemma:collinearorder
COBAC lemma:collinear4
COABC lemma:collinearorder
NCABH reductio
EAABHABH lemma:equalanglesreflexive
AOABHABG defn:anglelessthan
EAGBAABG lemma:ABCequalsCBA
AOABHGBA lemma:angleorderrespectscongruence
COHBA assumption
COABH lemma:collinearorder
NCHBA reductio
EAHBAABH lemma:ABCequalsCBA
AOHBAGBA lemma:angleorderrespectscongruence2
AOHBADEF lemma:angleorderrespectscongruence
EAABHHBA lemma:ABCequalsCBA
AOABHDEF lemma:angleorderrespectscongruence2
RABAA lemma:ray4
SSGCBA
SSCGBA lemma:samesidesymmetric
BEAHG
RAAGH lemma:ray4
EQAA cn:equalityreflexive
COBAA defn:collinear
SSCHBA lemma:sameside2
BECBH assumption
EQBB cn:equalityreflexive
COBAB defn:collinear
OSCBAH defn:oppositeside
OSHBAC lemma:oppositesidesymmetric
OSCBAC lemma:planeseparation
ANBECMC+COBAM+NCBAC defn:oppositeside
BECMC
NOBECMC axiom:betweennessidentity
NOBECBH reductio
COBCH
OREQBC|EQBH|EQCH|BECBH|BEBCH|BEBHC defn:collinear
cases RABCH:EQBC|EQBH|EQCH|BECBH|BEBCH|BEBHC
case 1:EQBC
COABC defn:collinear
NORABCH assumption
NCABC
RABCH reductio
qedcase
case 2:EQBH
COBHA defn:collinear
NORABCH assumption
COBHA assumption
COHBA lemma:collinearorder
NCHBA
NCBHA reductio
RABCH reductio
qedcase
case 3:EQCH
EQHH cn:equalityreflexive
cases RABCH:EQBH|NEBH
case 1:EQBH
COBHA defn:collinear
NORABCH assumption
COBHA assumption
COHBA lemma:collinearorder
NCHBA
NCBHA reductio
RABCH reductio
qedcase
case 2:NEBH
RABHH lemma:ray4
RABCH cn:equalitysub
qedcase
RABCH cases
qedcase
case 4:BECBH
NORABCH assumption
NOBECBH
RABCH reductio
qedcase
case 5:BEBCH
NEBC lemma:betweennotequal
RABCH lemma:ray4
qedcase
case 6:BEBHC
NEBC lemma:betweennotequal
RABCH lemma:ray4
qedcase
RABCH cases
EAABCABC lemma:equalanglesreflexive
EAABCABH lemma:equalangleshelper
AOABCDEF lemma:angleorderrespectscongruence2
qedcase
case 2: NOOSGBCA
COBAR
OREQBA|EQBR|EQAR|BEABR|BEBAR|BEBRA defn:collinear
cases AOABCDEF:EQBA|EQBR|EQAR|BEABR|BEBAR|BEBRA
case 1:EQBA
NOAOABCDEF assumption
NEBA
AOABCDEF reductio
qedcase
case 2:EQBR
BEGAP
BECRP axiom:betweennesssymmetry
COCPG assumption
COCRP defn:collinear
COCBP cn:equalitysub
COGAP defn:collinear
COGPA lemma:collinearorder
COGPC lemma:collinearorder
NEGP lemma:betweennotequal
COPCA lemma:collinear4
COPCB lemma:collinearorder
NECP lemma:betweennotequal
NEPC lemma:inequalitysymmetric
COCAB lemma:collinear4
COABC lemma:collinearorder
NCABC
NCCPG reductio
ANBECQA+BEGQR postulate:Pasch-inner
BECQA
BEGQR
BEGQB cn:equalitysub
BEBQG axiom:betweennesssymmetry
NEBQ lemma:betweennotequal
NEBG lemma:betweennotequal
RABQG lemma:ray4
RABGQ lemma:ray5
EQQQ cn:equalityreflexive
EQAA cn:equalityreflexive
EQCC cn:equalityreflexive
RABAA lemma:ray4
RABCC lemma:ray4
RABGG lemma:ray4
RABQQ lemma:ray4
NCABG
EEAQAQ cn:congruencereflexive
EEBQBQ cn:congruencereflexive
EEBABA cn:congruencereflexive
EAABGABQ defn:equalangles
BEAQC axiom:betweennesssymmetry
AOABGABC defn:anglelessthan
EAABGDEF
EADEFABG lemma:equalanglessymmetric
AODEFABC lemma:angleorderrespectscongruence2
NOAOABCDEF assumption
NOAODEFABC
AOABCDEF reductio
qedcase
case 3:EQAR
NOAOABCDEF assumption
BEPAG axiom:betweennesssymmetry
BEPAC cn:equalitysub
EQGG cn:equalityreflexive
RABGG lemma:ray4
EQAA cn:equalityreflexive
RABAA lemma:ray4
EQCC cn:equalityreflexive
RABCC lemma:ray4
EADEFABG lemma:equalanglessymmetric
BEAGC assumption
EAABGABG lemma:equalanglesreflexive
AOABGABC defn:anglelessthan
AODEFABC lemma:angleorderrespectscongruence2
NOAODEFABC
NOBEAGC reductio
BEACG assumption
EAABCABC lemma:equalanglesreflexive
AOABCABG defn:anglelessthan
AOABCDEF lemma:angleorderrespectscongruence
NOBEACG reductio
EQCG lemma:outerconnectivity
EAABCABC lemma:equalanglesreflexive
EAABGABC cn:equalitysub
EAABCABG lemma:equalanglessymmetric
EAABCDEF lemma:equalanglestransitive
EAABCDEF
AOABCDEF reductio
qedcase
case 4:BEABR
BERBA axiom:betweennesssymmetry
BECRP
BEABR axiom:betweennesssymmetry
COCPA assumption
COCRP defn:collinear
COCPR lemma:collinearorder
NECP lemma:betweennotequal
COPAR lemma:collinear4
CORBA defn:collinear
CORAB lemma:collinearorder
CORAP lemma:collinearorder
NERA lemma:betweennotequal
COABP lemma:collinear4
COPAB lemma:collinearorder
COGAP defn:collinear
COPAG lemma:collinearorder
NEAP lemma:betweennotequal
NEPA lemma:inequalitysymmetric
COABG lemma:collinear4
NCABG
NCCPA reductio
ANBEAMP+BECBM postulate:Pasch-outer
BEAMP
BECBM
BEGAP
BEPAG axiom:betweennesssymmetry
BEPMA axiom:betweennesssymmetry
BEMAG lemma:3.6a
BEGAM axiom:betweennesssymmetry
COCMG assumption
BEPMA axiom:betweennesssymmetry
BEPAG axiom:betweennesssymmetry
BEPMG lemma:3.6b
COPMG defn:collinear
COMGP lemma:collinearorder
COMGC lemma:collinearorder
NEMG lemma:betweennotequal
COGPC lemma:collinear4
COPAG defn:collinear
COGPA lemma:collinearorder
NEPG lemma:betweennotequal
NEGP lemma:inequalitysymmetric
COPCA lemma:collinear4
COCPA lemma:collinearorder
NCCPA
NCCMG reductio
ANBECQA+BEGQB postulate:Pasch-inner
BECQA
BEGQB
BEBQG axiom:betweennesssymmetry
NEBQ lemma:betweennotequal
NEBG lemma:betweennotequal
RABQG lemma:ray4
RABGQ lemma:ray5
EQQQ cn:equalityreflexive
EQAA cn:equalityreflexive
EQCC cn:equalityreflexive
RABAA lemma:ray4
RABCC lemma:ray4
RABGG lemma:ray4
RABQQ lemma:ray4
NCABG
EEAQAQ cn:congruencereflexive
EEBQBQ cn:congruencereflexive
EEBABA cn:congruencereflexive
EAABGABQ defn:equalangles
BEAQC axiom:betweennesssymmetry
AOABGABC defn:anglelessthan
EAABGDEF
EADEFABG lemma:equalanglessymmetric
AODEFABC lemma:angleorderrespectscongruence2
NOAOABCDEF assumption
NOAODEFABC
AOABCDEF reductio
qedcase
case 5:BEBAR
COPCB assumption
COBAR defn:collinear
COPRC defn:collinear
COPCR lemma:collinearorder
NEPC lemma:betweennotequal
COCBR lemma:collinear4
CORBC lemma:collinearorder
CORBA lemma:collinearorder
NEBR lemma:betweennotequal
NERB lemma:inequalitysymmetric
COBCA lemma:collinear4
COABC lemma:collinearorder
NCABC
NCPCB reductio
ANBEBQC+BEPAQ postulate:Pasch-outer
BEBQC
COBCQ defn:collinear
EQGQ assumption
BEBGC cn:equalitysub
RABCG lemma:ray4
RABAA lemma:ray4
RABGG lemma:ray4
EEAGAG cn:congruencereflexive
EEBGBG cn:congruencereflexive
EEBABA cn:congruencereflexive
NCABG
EAABGABC defn:equalangles
EAABCABG lemma:equalanglessymmetric
EAABGDEF
EAABCDEF lemma:equalanglestransitive
NOEAABCDEF
NEGQ reductio
COBCG assumption
BEPAQ
BEPAG axiom:betweennesssymmetry
RAAGQ defn:ray
COAGQ lemma:rayimpliescollinear
COCBG lemma:collinearorder
COCBQ lemma:collinearorder
NEBC lemma:betweennotequal
NECB lemma:inequalitysymmetric
EQBB cn:equalityreflexive
COCBB defn:collinear
COGQB lemma:collinear5
COQGB lemma:collinearorder
COQGA lemma:collinearorder
NEQG lemma:inequalitysymmetric
COGBA lemma:collinear4
COABG lemma:collinearorder
NCBCG reductio
BEAQG assumption
BEGQA axiom:betweennesssymmetry
OSGBCA defn:oppositeside
NOBEAQG reductio
RABCQ lemma:ray4
RABAA lemma:ray4
BEAGQ assumption
EAABGABG lemma:equalanglesreflexive
AOABGABC defn:anglelessthan
EADEFABG lemma:equalanglessymmetric
AODEFABC lemma:angleorderrespectscongruence2
NOBEAGQ reductio
BEPAQ
BEPAG axiom:betweennesssymmetry
NOBEAGQ
NOBEAQG
EQGQ lemma:outerconnectivity
NOAOABCDEF assumption
NEGQ
AOABCDEF reductio
qedcase
case 6:BEBRA
NOAOABCDEF assumption
BEPAG axiom:betweennesssymmetry
BEBRA
COPGB assumption
COPAG defn:collinear
COPGA lemma:collinearorder
NEPG lemma:betweennotequal
COGBA lemma:collinear4
COABG lemma:collinearorder
NCABG
NCPGB reductio
ANBEBQG+BEPRQ postulate:Pasch-outer
BEBQG
NEBQ lemma:betweennotequal
RABQG lemma:ray4
BERCQ assumption
RABAR lemma:ray4
RABGQ lemma:ray4
EAABCABC lemma:equalanglesreflexive
AOABCABG defn:anglelessthan
EAABGDEF
EADEFABG lemma:equalanglessymmetric
AOABCDEF lemma:angleorderrespectscongruence
NOBERCQ reductio
BERQC assumption
EQAA cn:equalityreflexive
RABAA lemma:ray4
RABQG lemma:ray4
EQGG cn:equalityreflexive
RABGG lemma:ray4
EEBABA cn:congruencereflexive
EEBGBG cn:congruencereflexive
EEAGAG cn:congruencereflexive
NCABG
EAABGABQ defn:equalangles
RABAR lemma:ray4
EQCC cn:equalityreflexive
RABCC lemma:ray4
AOABGABC defn:anglelessthan
EADEFABG lemma:equalanglessymmetric
AODEFABC lemma:angleorderrespectscongruence2
NOAODEFABC
NOBERQC reductio
BEPRQ
BEPRC
EQQC lemma:outerconnectivity
EQCC cn:equalityreflexive
RABCC lemma:ray4
RABCG cn:equalitysub
EQAA cn:equalityreflexive
RABAA lemma:ray4
EQGG cn:equalityreflexive
RABGG lemma:ray4
EEBABA cn:congruencereflexive
EEBGBG cn:congruencereflexive
EEAGAG cn:congruencereflexive
EAABCABG defn:equalangles
EAABCDEF lemma:equalanglestransitive
EAABCDEF
AOABCDEF reductio
qedcase
AOABCDEF cases
qedcase
AOABCDEF cases
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists