Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/proofs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/proofs/Prop44A.prf

PGBEFG
EAEBGJDN
BEABE
PGEFGB lemma:PGrotate
PGFGBE lemma:PGrotate
PGGBEF lemma:PGrotate
PRGFBE defn:parallelogram
NCGBE  lemma:parallelNC
NEGB   lemma:NCdistinct
ANBEGBq+EEBqGB lemma:extension
BEGBq
EEBqGB
NCEBG  lemma:NCorder
COABE  defn:collinear
COEBA  lemma:collinearorder
EQBB   cn:equalityreflexive
COEBB  defn:collinear
NEAB   lemma:betweennotequal
NCABG  lemma:NChelper
COGBq  defn:collinear
NCGBA  lemma:NCorder
NEGq   lemma:betweennotequal
NEqG   lemma:inequalitysymmetric
EQGG  cn:equalityreflexive
COGBG  defn:collinear
NCqGA  lemma:NChelper
NCGqA  lemma:NCorder
ANBEHAh+EAhABABG+EAhABGBA+EABAhGBA+EAHABABq+EAHABqBA+EABAHqBA+PRHhGq+EEHABq+EEAhGB+EEATTB+EEHTTq+EEGTTh+BEHTq+BEGTh+BEATB proposition:31
BEHAh
PRHhGq
BEHTq
BEATB
EEHABq
PRHhqG  lemma:parallelflip
COGBq  defn:collinear
COqGB  lemma:collinearorder
NEBG  lemma:NCdistinct
PRHhBG  lemma:collinearparallel
PRHhGB  lemma:parallelflip
PRGBHh  lemma:parallelsymmetric
PRGBhH  lemma:parallelflip
COHAh  defn:collinear
COhHA  lemma:collinearorder
NEHA   lemma:betweennotequal
NEAH   lemma:inequalitysymmetric
PRGBAH lemma:collinearparallel
PRGBHA lemma:parallelflip
PRHAGB  lemma:parallelsymmetric
EEHAGB  lemma:congruencetransitive
EQBB  cn:equalityreflexive
COABB   defn:collinear
COATB  defn:collinear
COABT  lemma:collinearorder
NCBHA  lemma:parallelNC
NCABH  lemma:NCorder
NCHAB lemma:parallelNC
NCABH  lemma:NCorder
ANCOABT+COABB+BEHTq+BEGBq+NCABH+NCABG  
SSHGAB  defn:sameside
ANPRHGAB+EEHGAB  proposition:33B
PRHGAB
PRABHG  lemma:parallelsymmetric
PRABGH  lemma:parallelflip
PGGBEF
ANPRGBEF+PRGFBE  defn:parallelogram
PRGBEF
PRGFBE
PRGFEB  lemma:parallelflip
COABE   defn:collinear
COEBA   lemma:collinearorder
PRGFAB  lemma:collinearparallel
PRABGF  lemma:parallelsymmetric
COGHF   lemma:Playfair
PRHABG  lemma:parallelflip
PRGBFE  lemma:parallelflip
PRFEGB  lemma:parallelsymmetric
PGHABG   defn:parallelogram
ANBEHjB+BEAjG  lemma:diagonalsmeet
BEHjB
BEAjG
PGGBEF 
ANBEGkE+BEBkF  lemma:diagonalsmeet
BEGkE
BEBkF
PRHAGB
PRFEGB
BEEBA  axiom:betweennesssymmetry
EQEE  cn:equalityreflexive
EQBB  cn:equalityreflexive
EQAA  cn:equalityreflexive
COFEE  defn:collinear
COGBB  defn:collinear
COHAA  defn:collinear
NCFEB  lemma:parallelNC
NEFE  lemma:NCdistinct
NEGB  lemma:NCdistinct
NCHAG  lemma:parallelNC
NEHA  lemma:NCdistinct
PRHAFE  proposition:30
EEHAGB
EEGBFE  proposition:34
EEHAFE  lemma:congruencetransitive
PGHABG
PGGBEF
PRGFBE  defn:parallelogram
PRHGAB  defn:parallelogram
PRBEGF  lemma:parallelsymmetric
PRABHG  lemma:parallelsymmetric
TPBEGF  lemma:paralleldef2B
TPABHG lemma:paralleldef2B
SSGFBE  defn:tarski_parallel
SSHGAB  defn:tarski_parallel
COABE   defn:collinear
NEAE    lemma:betweennotequal
SSHGAE  lemma:samesidecollinear
SSGFEB  lemma:samesideflip
COEBA  lemma:collinearorder
NEEA   lemma:inequalitysymmetric
SSGFEA  lemma:samesidecollinear
SSGFAE  lemma:samesideflip
SSHFAE  lemma:samesidetransitive
ANPRHAFE+EEHAFE+SSHFAE
PRHFAE   proposition:33B
PRHAEF  lemma:parallelflip
PGHAEF   defn:parallelogram
NCHFE   lemma:parallelNC
NCEFH  lemma:NCorder
ANMIHtE+MIAtF lemma:diagonalsbisect
MIHtE
MIAtF
ANBEHtE+EEHttE  defn:midpoint
EEHttE
ANBEAtF+EEAttF defn:midpoint
EEAttF
EEAtFt  lemma:congruenceflip
BEAtF   
BEHtE
BEABE
EEHtEt  lemma:congruenceflip
EEtAtF  lemma:congruenceflip
NCHEF   lemma:NCorder
ANBEHBK+BEFEK  postulate:Euclid5
BEFEK
COFEK   defn:collinear
COEFK   lemma:collinearorder
NEFK  lemma:betweennotequal
NEKF  lemma:inequalitysymmetric
PRHAKF lemma:collinearparallel
PRHAFK  lemma:parallelflip
PRFKHA  lemma:parallelsymmetric
PRFKAH lemma:parallelflip
EQHH  cn:equalityreflexive
COAHH   defn:collinear
ANPGHLKF+COAHL lemma:triangletoparallelogram
PGHLKF
COAHL
PRHLKF  defn:parallelogram
NCLKF  lemma:parallelNC
NELK  lemma:NCdistinct
NEKL  lemma:inequalitysymmetric
PGGBEF
PRGBEF defn:parallelogram
PRGBFE lemma:parallelflip
COFEE  defn:collinear
COFEK  defn:collinear
NEEK   lemma:betweennotequal
PRGBEK lemma:collinearparallel2
PREKGB  lemma:parallelsymmetric
COGBB  defn:collinear
ANPGBMKE+COGBM lemma:triangletoparallelogram
%Now set up to apply 43
PGHLKF
PGLKFH lemma:PGrotate
PGKLHF lemma:PGflip
PGLHFK lemma:PGrotate
PGHFKL lemma:PGrotate
BEFEK
BEABE
PGHABG
PGAHGB  lemma:PGflip
PRAHGB  defn:parallelogram
EQKK   cn:equalityreflexive
EQEE  cn:equalityreflexive
EQFF  cn:equalityreflexive
BEHBK
PGBMKE
PRBEMK defn:parallelogram
PRMKBE  lemma:parallelsymmetric
PRKMEB  lemma:parallelflip
PGGBEF
PRGFBE  defn:parallelogram
NCEMK  lemma:parallelNC
NCBEK lemma:parallelNC
NCGFB  lemma:parallelNC
PRMKBE  lemma:parallelflip
PRGFBE lemma:parallelflip
BEKEF  axiom:betweennesssymmetry
COMKK  defn:collinear
COBEE  defn:collinear
COGFF  defn:collinear
NEMK   lemma:NCdistinct
NEBE   lemma:NCdistinct
NEGF   lemma:NCdistinct
PRMKGF   proposition:30
PRKMFG  lemma:parallelflip
PRFGKM  lemma:parallelsymmetric
PGHLKF
PRHFLK  defn:parallelogram
PRLKHF  lemma:parallelsymmetric
PRKLHF  lemma:parallelflip
COHFG   lemma:collinearorder
PRKLGF  lemma:collinearparallel
PRKLFG  lemma:parallelflip
PRFGKL  lemma:parallelsymmetric
COKML  lemma:Playfair  
COMKL  lemma:collinearorder
PRBEMK  defn:parallelogram
NELK   lemma:inequalitysymmetric
PRBELK  lemma:collinearparallel
PRLKBE  lemma:parallelsymmetric
PRLKEB  lemma:parallelflip
COABE  defn:collinear
COEBA   lemma:collinearorder
PRLKAB  lemma:collinearparallel
PRABLK  lemma:parallelsymmetric
PRABKL  lemma:parallelflip
BEKBH   axiom:betweennesssymmetry
COLAH   lemma:collinearorder
BELAH   lemma:parallelbetween
BEHAL   axiom:betweennesssymmetry
PRHAGB lemma:parallelflip
COGBM 
NCBMK  lemma:parallelNC
NEMB  lemma:NCdistinct
PRHAMB  lemma:collinearparallel
PRMBHA  lemma:parallelsymmetric
PRMBAH  lemma:parallelflip
COAHL   lemma:collinearorder
PGHLKF
PRHLKF  defn:parallelogram
NCHLK   lemma:parallelNC
NELH  lemma:NCdistinct
PRMBLH  lemma:collinearparallel
PRMBHL  lemma:parallelflip
COLMK   lemma:collinearorder
BELMK  lemma:parallelbetween
PGGBEF
PRGBEF  defn:parallelogram
COFEK  defn:collinear
COEFK   lemma:collinearorder
NEFK  lemma:betweennotequal
NEKF  lemma:inequalitysymmetric
PRGBKF  lemma:collinearparallel
COFGH  lemma:collinearorder
BEFGH  lemma:parallelbetween
BEHGF  axiom:betweennesssymmetry
PGHABG
PGABGH  lemma:PGrotate
PGBGHA  lemma:PGrotate
PGGHAB  lemma:PGrotate
PGMKEB  lemma:PGrotate
PGKEBM lemma:PGrotate
PGEBMK  lemma:PGrotate
EFBEFGLMBA  proposition:43
PGHLKF
BEHGF
BEHAL
BELMK
PGAHGB  lemma:PGflip
PGMBEK  lemma:PGflip
PGABML  proposition:43B
EAEBGJDN
BEABE
COHGF  lemma:collinearorder
COLMK
NEHF  lemma:betweennotequal
NELK  lemma:betweennotequal
NEHG  lemma:betweennotequal
NEMK  lemma:betweennotequal
PRHFLK  defn:parallelogram
NOMEHFLK  defn:parallel
BEHBK
COGMB   lemma:collinearorder
BEGBM  lemma:collinearbetween
EAABMGBE  proposition:15
EAGBEEBG  lemma:ABCequalsCBA
EAABMEBG  lemma:equalanglestransitive
EAABMJDN  lemma:equalanglestransitive 
ANPGABML+EAABMJDN+EFBEFGLMBA+BEGBM

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists