Sindbad~EG File Manager
PGABCD
BEAHD
BEAEB
BEDFC
BEBGC
PGEAHK
PGGKFC
PRADBC defn:parallelogram
PRABCD defn:parallelogram
PREAHK defn:parallelogram
PREKAH defn:parallelogram
PRGKFC defn:parallelogram
PRFCGK lemma:parallelsymmetric
PRCFGK lemma:parallelflip
PRGCKF defn:parallelogram
PRBCAD lemma:parallelsymmetric
PRCDAB lemma:parallelsymmetric
PRAHEK lemma:parallelsymmetric
TPABCD lemma:paralleldef2B
TPEAHK lemma:paralleldef2B
TPGCKF lemma:paralleldef2B
TPBCAD lemma:paralleldef2B
SSADBC defn:tarski_parallel
SSADCB lemma:samesideflip
SSDACB lemma:samesidesymmetric
SSCDAB defn:tarski_parallel
SSHKEA defn:tarski_parallel
SSKFGC defn:tarski_parallel
NEAE lemma:betweennotequal
NEAH lemma:betweennotequal
NEBG lemma:betweennotequal
NEAB lemma:betweennotequal
NEBA lemma:inequalitysymmetric
ANBEBAe+EEAeBA lemma:extension
BEBAe
BEeAB axiom:betweennesssymmetry
SSDCAB lemma:samesidesymmetric
PRADBC
RTDABABC proposition:29C
BEBEA axiom:betweennesssymmetry
BEEAe lemma:3.6a
BEeAE axiom:betweennesssymmetry
PRAHEK
SSHKAE lemma:samesidesymmetric
RTHAEAEK proposition:29C
RAAEB lemma:ray4
RAAHD lemma:ray4
NCAHE lemma:parallelNC
NCEAH lemma:NCorder
EAEAHEAH lemma:equalanglesreflexive
EAEAHBAD lemma:equalangleshelper
EAHAEDAB lemma:equalanglesflip
EAAEKABC lemma:supplements2
SSCDAB
SSCDBA lemma:samesideflip
COAEB defn:collinear
COBAE lemma:collinearorder
NEEB lemma:betweennotequal
NEBE lemma:inequalitysymmetric
SSCDBE lemma:samesidecollinear
RAAHD lemma:ray4
RAADH lemma:ray5
SSCHBE lemma:sameside2
SSHKEA
COEAB lemma:collinearorder
SSHKEB lemma:samesidecollinear
SSHKBE lemma:samesideflip
SSCKBE lemma:samesidetransitive
SSKCBE lemma:samesidesymmetric
RABGC lemma:ray4
RABCG lemma:ray5
EQBB cn:equalityreflexive
COBBE defn:collinear
SSKGBE lemma:sameside2
SSKGEB lemma:samesideflip
RABEA lemma:ray4
RABAE lemma:ray5
EAAEKEBG lemma:equalangleshelper
PREKBG proposition:28D
PREKGB lemma:parallelflip
SSDACB
NEBC lemma:betweennotequal
ANBEBCc+EECcBC lemma:extension
BEBCc
BEcCB axiom:betweennesssymmetry
PRCDBA lemma:parallelflip
RTDCBCBA proposition:29C
PRCFGK
SSKFGC
SSKFCG lemma:samesideflip
SSFKCG lemma:samesidesymmetric
BECGB axiom:betweennesssymmetry
BEcCG axiom:innertransitivity
RTFCGCGK proposition:29C
NCDBC lemma:parallelNC
NCDCB lemma:NCorder
EADCBDCB lemma:equalanglesreflexive
BECFD axiom:betweennesssymmetry
NECF lemma:betweennotequal
RACFD lemma:ray4
RACDF lemma:ray5
BECGB axiom:betweennesssymmetry
NECG lemma:betweennotequal
RACGB lemma:ray4
RACBG lemma:ray5
EADCBFCG lemma:equalangleshelper
EACBACGK lemma:supplements2
EACGKCBA lemma:equalanglessymmetric
EQAA cn:equalityreflexive
RABAA lemma:ray4
NEBG lemma:betweennotequal
RABGC lemma:ray4
RABCG lemma:ray5
EACGKGBA lemma:equalangleshelper
COBGC defn:collinear
COCBG lemma:collinearorder
SSADBC
BECFD axiom:betweennesssymmetry
NECF lemma:betweennotequal
RACFD lemma:ray4
RACDF lemma:ray5
EQCC cn:equalityreflexive
COBCC defn:collinear
SSAFBC lemma:sameside2
PRGCKF
TPGCKF lemma:paralleldef2B
SSKFGC defn:tarski_parallel
COCGB lemma:collinearorder
NECB lemma:inequalitysymmetric
SSKFCG lemma:samesideflip
SSKFCB lemma:samesidecollinear
SSKFBC lemma:samesideflip
SSFKBC lemma:samesidesymmetric
SSAKBC lemma:samesidetransitive
SSKABC lemma:samesidesymmetric
COBCG lemma:collinearorder
NEBG
SSKABG lemma:samesidecollinear
SSKAGB lemma:samesideflip
PRGKBA proposition:28D
PRGKAB lemma:parallelflip
COABE lemma:collinearorder
PRGKEB lemma:collinearparallel
PREBGK lemma:parallelsymmetric
PREBKG lemma:parallelflip
PGEKGB defn:parallelogram
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists