Sindbad~EG File Manager
TRABC
NCJDK
MIBEC
ANBEBEC+EEBEEC defn:midpoint
BEBEC
EEBEEC
EEEBEC lemma:congruenceflip
NCABC defn:triangle
COBEC defn:collinear
NCBCA lemma:NCorder
COBCE lemma:collinearorder
EQCC cn:equalityreflexive
COBCC defn:collinear
NEEC lemma:betweennotequal
NCECA lemma:NChelper
ANRAECc+EAfEcJDK+SSfAEC proposition:23C
SSfAEC
NCBCA lemma:NCorder
ANBEPAQ+EAQAEAEB+EAQAEBEA+EAEAQBEA+EAPAEAEC+EAPAECEA+EAEAPCEA+PRPQBC+EEPAEC+EEAQBE+EEAMME+EEPMMC+EEBMMQ+BEPMC+BEBMQ+BEAME proposition:31
BEPAQ
EAPAEAEC
BEPMC
BEAME
EEPMMC
EEAMME
EEBMMQ
EAAECPAE lemma:equalanglessymmetric
NCPAE lemma:equalanglesNC
NCEAP lemma:NCorder
SSAfEC lemma:samesidesymmetric
NCBCA lemma:NCorder
COBCE lemma:collinearorder
EQBB cn:equalityreflexive
EQAA cn:equalityreflexive
COBCB defn:collinear
NEBE lemma:betweennotequal
NCBEA lemma:NChelper
EQCC cn:equalityreflexive
COBCC defn:collinear
NEEC lemma:betweennotequal
NECE lemma:inequalitysymmetric
NCCEA lemma:NChelper
NEEA lemma:NCdistinct
%Now show Ef has to meet PQ, which Euclid fails to mention
NOMEEfPQ assumption
AOCEfCEA assumption
RAECC lemma:ray4
RAEAA lemma:ray4
ANBEAmC+RAEfm lemma:crossbar2
BEAmC
RAEfm
BECmA axiom:betweennesssymmetry
BECMP axiom:betweennesssymmetry
BEEMA axiom:betweennesssymmetry
EEMEAM lemma:congruencesymmetric
EEEMAM lemma:congruenceflip
EEMCPM lemma:congruencesymmetric
EEMCMP lemma:congruenceflip
ANBEEmF+BEPAF postulate:Euclid5
BEEmF
BEPAF
COEmF defn:collinear
COmEF lemma:collinearorder
COEfm lemma:rayimpliescollinear
COmEf lemma:collinearorder
NEEm lemma:betweennotequal
NEmE lemma:inequalitysymmetric
COEfF lemma:collinear4
COPAF defn:collinear
COPAQ defn:collinear
NEPA lemma:betweennotequal
NEAP lemma:inequalitysymmetric
COAPF lemma:collinearorder
COAPQ lemma:collinearorder
COPFQ lemma:collinear4
COPQF lemma:collinearorder
NEEf lemma:ray2
NEPQ lemma:betweennotequal
MEEfPQ defn:meet
NOAOCEfCEA reductio
COECB lemma:collinearorder
NEBE lemma:betweennotequal
NEEB lemma:inequalitysymmetric
SSAfEB lemma:samesidecollinear
SSfAEB lemma:samesidesymmetric
BECEB axiom:betweennesssymmetry
EQAA cn:equalityreflexive
EQff cn:equalityreflexive
NCEBf defn:sameside
NEEf lemma:NCdistinct
COBEC defn:collinear
COEBC lemma:collinearorder
EQEE cn:equalityreflexive
COEBE defn:collinear
NCECf lemma:NChelper
NCCEf lemma:NCorder
AOCEACEf assumption
RAEAA lemma:ray4
RAEff lemma:ray4
SUCEAAB defn:supplement
SUCEffB defn:supplement
AOfEBAEB lemma:supplementinequality
NCBEf lemma:NCorder
EABEffEB lemma:ABCequalsCBA
AOBEfAEB lemma:angleorderrespectscongruence2
EABEAAEB lemma:ABCequalsCBA
AOBEfBEA lemma:angleorderrespectscongruence
RAEBB lemma:ray4
RAEAA lemma:ray4
ANBEAmB+RAEfm lemma:crossbar2
BEAmB
RAEfm
BEBmA axiom:betweennesssymmetry
BEBMQ
BEEMA axiom:betweennesssymmetry
EEMEAM lemma:congruencesymmetric
EEEMAM lemma:congruenceflip
EEMBMQ lemma:congruenceflip
NCEAP
NCPAE lemma:NCorder
COPAQ defn:collinear
EQAA cn:equalityreflexive
COPAA defn:collinear
NEAQ lemma:betweennotequal
NEQA lemma:inequalitysymmetric
NCQAE lemma:NChelper
NCEAQ lemma:NCorder
ANBEEmF+BEQAF postulate:Euclid5
BEEmF
BEQAF
COEmF defn:collinear
COmEF lemma:collinearorder
COEfm lemma:rayimpliescollinear
COmEf lemma:collinearorder
NEEm lemma:betweennotequal
NEmE lemma:inequalitysymmetric
COEfF lemma:collinear4
COQAF defn:collinear
BEQAP axiom:betweennesssymmetry
COQAP defn:collinear
NEQA lemma:betweennotequal
NEAQ lemma:inequalitysymmetric
COAQF lemma:collinearorder
COAQP lemma:collinearorder
COQFP lemma:collinear4
COPQF lemma:collinearorder
NEEf lemma:ray2
NEQP lemma:betweennotequal
NEPQ lemma:inequalitysymmetric
MEEfPQ defn:meet
NOAOCEACEf reductio
NOEACEACEf assumption
NCCEA
NCCEf
AOCEACEf lemma:angletrichotomy2
EACEACEf reductio
% We will show RAEfA so Ef meets PQ in A
ANRAECd+RAEAa+RAECp+RAEfq+EEEdEp+EEEaEq+EEdapq+NCCEA defn:equalangles
RAEAa
RAEfq
RAECp
RAECd
EEEdEp
EEEaEq
EEdapq
COPQA defn:collinear
EQdp lemma:layoffunique
EEdadq cn:equalitysub
EEadqd lemma:congruenceflip
EEaEqE lemma:congruenceflip
NEEd lemma:raystrict
SSAfEC
COECd lemma:rayimpliescollinear
SSAfEd lemma:samesidecollinear
COEdE defn:collinear
COEEd lemma:collinearorder
SSAqEd lemma:sameside2
SSqAEd lemma:samesidesymmetric
SSqaEd lemma:sameside2
SSaqEd lemma:samesidesymmetric
EQaq proposition:07
COEAa lemma:rayimpliescollinear
COEfq lemma:rayimpliescollinear
COEAq cn:equalitysub
COqEA lemma:collinearorder
COqEf lemma:collinearorder
NEEq lemma:raystrict
NEqE lemma:inequalitysymmetric
COEAf lemma:collinear4
COEfA lemma:collinearorder
NEPQ lemma:betweennotequal
MEEfPQ defn:meet
MEEfPQ reductio
ANNEEf+NEPQ+COEfF+COPQF defn:meet
NEPQ
PRPQBC
COBCE
NECE lemma:inequalitysymmetric
PRPQEC lemma:collinearparallel
PRECPQ lemma:parallelsymmetric
COPQF
ANPGFGCE+COPQG lemma:triangletoparallelogram
PGFGCE
PGGFEC lemma:PGflip
PGFECG lemma:PGrotate
COPQF
COPQG
COPAQ defn:collinear
COPQA lemma:collinearorder
PRFECG defn:parallelogram
NCFEG lemma:parallelNC
NEFG lemma:NCdistinct
COFGA lemma:collinear5
ETFECAEC proposition:41
PRPQCB lemma:parallelflip
COCBE lemma:collinearorder
NEEB lemma:inequalitysymmetric
PRPQEB lemma:collinearparallel
PRPQBE lemma:parallelflip
COPQA
EEBEEC lemma:congruenceflip
COBEC
EQEE cn:equalityreflexive
COBEE defn:collinear
ETABEAEC proposition:38
ETAECABE axiom:ETsymmetric
ETAECAEB axiom:ETpermutation
ETAEBAEC axiom:ETsymmetric
EQEE cn:equalityreflexive
COAEE defn:collinear
NCAEB lemma:NCorder
OSBAEC defn:oppositeside
PGFECG
PGEFGC lemma:PGflip
TCFECCGF proposition:34
ETFECCGF axiom:congruentequal
ETFECFCG axiom:ETpermutation
ETFCGFEC axiom:ETsymmetric
ETFCGFCE axiom:ETpermutation
ETFCEFCG axiom:ETsymmetric
ANBEEmG+BEFmC lemma:diagonalsmeet
BEEmG
BEFmC
COFmC defn:collinear
COFCm lemma:collinearorder
PRFECG defn:parallelogram
NCFEC lemma:parallelNC
NCFCE lemma:NCorder
OSEFCG defn:oppositeside
ETFCEFCG
ETAEBAEC
ETFECAEC
ETAECFEC axiom:ETsymmetric
ETAEBFEC axiom:ETtransitive
ETAEBFCE axiom:ETpermutation
ETAECFEC axiom:ETsymmetric
ETFCGFCE axiom:ETsymmetric
ETFCGFEC axiom:ETpermutation
ETFECFCG axiom:ETsymmetric
ETAECFCG axiom:ETtransitive
EFABECFECG axiom:paste3
RAECc
NCFEC lemma:parallelNC
NCCEF lemma:NCorder
EACEFCEF lemma:equalanglesreflexive
COEfF
SSfAEC
OREQEf|EQEF|EQfF|BEfEF|BEEfF|BEEFf defn:collinear
NEFE lemma:NCdistinct
NEEF lemma:inequalitysymmetric
cases RAEFf:EQEf|EQEF|EQfF|BEfEF|BEEfF|BEEFf
case 1:EQEf
NORAEFf assumption
NEEf
RAEFf reductio
qedcase
case 2:EQEF
NORAEFf assumption
NEEF
RAEFf reductio
qedcase
case 3:EQfF
EQFF cn:equalityreflexive
NEEF
RAEFF lemma:ray4
RAEFf cn:equalitysub
qedcase
case 4:BEfEF
NORAEFf assumption
EQEE cn:equalityreflexive
COECE defn:collinear
BEFEf axiom:betweennesssymmetry
NCECF lemma:NCorder
OSFECf defn:oppositeside
OSfECF lemma:oppositesidesymmetric
SSAfEC lemma:samesidesymmetric
OSAECF lemma:planeseparation
ANBEAjF+COECj+NCECA defn:oppositeside
BEAjF
COECj
COAjF defn:collinear
COPQA
COPQF
NEPQ lemma:betweennotequal
NEQP lemma:inequalitysymmetric
COQAF lemma:collinear4
COAFQ lemma:collinearorder
COQPA lemma:collinearorder
COQPF lemma:collinearorder
COPAF lemma:collinear4
COAFP lemma:collinearorder
COAFj lemma:collinearorder
NEPQ lemma:betweennotequal
NEAF lemma:betweennotequal
COPQj lemma:collinear5
MEPQEC defn:meet
PRPQEC
NOMEPQEC defn:parallel
RAEFf reductio
qedcase
case 5:BEEfF
RAEFf lemma:ray4
qedcase
case 6:BEEFf
RAEFf lemma:ray4
qedcase
RAEFf cases
EACEFcEf lemma:equalangleshelper
EAFECfEc lemma:equalanglesflip
EAfEcJDK
EAFECJDK lemma:equalanglestransitive
EACEFFEC lemma:ABCequalsCBA
EACEFJDK lemma:equalanglestransitive
ANPGFECG+EFABECFECG+EACEFJDK+COFGA
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists