Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/proofs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/proofs/Prop39A.prf

TRABC
ETABCDBC
BEAMC
RABDM
NCABC   defn:triangle
NEAB   lemma:NCdistinct
ANBEAmB+EEmAmB  proposition:10
BEAmB
EEmAmB
COAmB  defn:collinear
COABm  lemma:collinearorder
EQAA   cn:equalityreflexive
COABA  defn:collinear
NEAm  lemma:betweennotequal
NCAmC  lemma:NChelper
NEmC  lemma:NCdistinct
NECm  lemma:inequalitysymmetric
ANBECmH+EEmHmC lemma:extension
BECmH
EEmHmC  
BEBmA  axiom:betweennesssymmetry
BECMA  axiom:betweennesssymmetry
EEmBmA lemma:congruencesymmetric
EEBmAm lemma:congruenceflip
EEmCmH lemma:congruencesymmetric
COBAH assumption
 COAmB  defn:collinear
 COBAm  lemma:collinearorder
 NEBA  lemma:inequalitysymmetric
 COAHm lemma:collinear4
 COHmA  lemma:collinearorder
 COCmH  defn:collinear
 COHmC  lemma:collinearorder
 NEmH  lemma:betweennotequal
 NEHm  lemma:inequalitysymmetric
 COmAC  lemma:collinear4
 COmAB  lemma:collinearorder
 NEAm  lemma:betweennotequal
 NEmA  lemma:inequalitysymmetric
 COABC lemma:collinear4
NCBAH  reductio
ANBEBME+BEHAE  postulate:Euclid5
BEHAE
BEHmC  axiom:betweennesssymmetry
COCmH defn:collinear
COmCH  lemma:collinearorder
EQmm  cn:equalityreflexive
COmCm  defn:collinear
NCmCA  lemma:NCorder
NEmH  lemma:betweennotequal
NCmHA  lemma:NChelper
NCAmH  lemma:NCorder
EAAmHCmB proposition:15
NCHmA  lemma:NCorder
COAmB  defn:collinear
COABm lemma:collinearorder
EQBB  cn:equalityreflexive
COABB  defn:collinear
NEmB  lemma:betweennotequal
NCmBC  lemma:NChelper
EAHmAAmH  lemma:ABCequalsCBA
EAHmACmB  lemma:equalanglestransitive
EEmHmC
EEmBmA 
EEmAmB  lemma:congruencesymmetric
EAmHAmCB  proposition:04
EQBB  cn:equalityreflexive
NEBC  lemma:NCdistinct
NECB  lemma:inequalitysymmetric
RACBB   lemma:ray4
RACmH   lemma:ray4
EAmHAHCB  lemma:equalangleshelper
EAHCBmHA  lemma:equalanglessymmetric
EQAA  cn:equalityreflexive
NEHA lemma:NCdistinct
RAHAA  lemma:ray4
BEHmC  axiom:betweennesssymmetry
NEHm  lemma:betweennotequal
RAHmC  lemma:ray4
EAHCBCHA  lemma:equalangleshelper
EACHAHCB  lemma:equalanglessymmetric
EAAHCBCH   lemma:equalanglesflip
NCBCH    lemma:equalanglesNC
EABCHHCB  lemma:ABCequalsCBA
EAAHCHCB  lemma:equalanglestransitive
COCmH  defn:collinear
COHCm   lemma:collinearorder
COHmC   lemma:collinearorder
EQHH  cn:equalityreflexive
COHmH  defn:collinear
NCHmA
NEHC  lemma:betweennotequal
NCHCA  lemma:NChelper
OSAHCB    defn:oppositeside
PRAHCB    proposition:27B
COHAE    defn:collinear
COAHE   lemma:collinearorder
COAHA   defn:collinear
NEAE  lemma:betweennotequal
PRCBAH  lemma:parallelsymmetric
PRCBAE  lemma:collinearparallel2
PRAECB  lemma:parallelsymmetric
PRAEBC  lemma:parallelflip
ETABCEBC  proposition:37
ETDBCABC  axiom:ETsymmetric
ETDBCEBC  axiom:ETtransitive
RABDM 
RABMD  lemma:ray5 
BEBME
NEBM  lemma:betweennotequal
RABME   lemma:ray4
RABDE  lemma:ray3
ORBEBED|EQDE|BEBDE  lemma:ray1
cases PRADBC:BEBED|EQDE|BEBDE
 case 1:BEBED
  NOPRADBC assumption
   NOETDBCEBC axiom:deZolt1
  PRADBC reductio
 qedcase
 case 2:EQDE
  PRADBC cn:equalitysub
 qedcase
 case 3:BEBDE
  NOPRADBC assumption
   NOETEBCDBC axiom:deZolt1
   ETEBCDBC   axiom:ETsymmetric
  PRADBC reductio
 qedcase
PRADBC cases


Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists