Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/proofs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/proofs/Prop29B.prf

PRAGHD
OSAGHD
ANNEAG+NEHD+COAGa+COAGg+NEag+COHDh+COHDd+NEhd+NOMEAGHD+BEamd+BEhmg  defn:parallel
NEAG
NEHD
NEDH lemma:inequalitysymmetric
COAGa
COAGg
NEag
NEhd
BEamd
BEhmg
EQHG assumption
 EQHH  cn:equalityreflexive
 COHDH defn:collinear
 EQGG  cn:equalityreflexive
 COAGG defn:collinear
 COAGH cn:equalitysub
 MEAGHD  defn:meet
 NOMEAGHD
NEHG reductio
ANBEAGB+EEGBAG  lemma:extension
ANBEDHC+EEHCDH  lemma:extension
ANBEHGE+EEGEHG   lemma:extension
BEAGB
BEDHC
BEHGE
NEAB  lemma:betweennotequal
NEBA  lemma:inequalitysymmetric
NEDC lemma:betweennotequal
NECD  lemma:inequalitysymmetric
COAGB  defn:collinear
COGAB  lemma:collinearorder
COGAa lemma:collinearorder
NEGA  lemma:inequalitysymmetric
COABa  lemma:collinear4
COGAg  lemma:collinearorder
COABg  lemma:collinear4
CODHC  defn:collinear
COHDC  lemma:collinearorder
COHDh
CODCh  lemma:collinear4
COCDh  lemma:collinearorder
COHDd
CODdC  lemma:collinear4
COCDd  lemma:collinearorder
COABa
COABg
COCDh
COCDd
MEABCD assumption
 ANNEAB+NECD+COABM+COCDM  defn:meet
 COABM
 COCDM
 COBAG  lemma:collinearorder
 COBAM lemma:collinearorder
 COAGM  lemma:collinear4
 COCDH  lemma:collinearorder
 CODHM lemma:collinear4
 COHDM lemma:collinearorder
 ANNEAG+NEHD+COAGM+COHDM
 MEAGHD  defn:meet
 NOMEAGHD
NOMEABCD reductio
PRABCD  defn:parallel
BEAGB
BECHD  axiom:betweennesssymmetry
BEEGH  axiom:betweennesssymmetry
ANEAAGHGHD+EAEGBGHD+RTBGHGHD  proposition:29
EAAGHGHD

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists