Sindbad~EG File Manager
PRAGHD
OSAGHD
ANNEAG+NEHD+COAGa+COAGg+NEag+COHDh+COHDd+NEhd+NOMEAGHD+BEamd+BEhmg defn:parallel
NEAG
NEHD
NEDH lemma:inequalitysymmetric
COAGa
COAGg
NEag
NEhd
BEamd
BEhmg
EQHG assumption
EQHH cn:equalityreflexive
COHDH defn:collinear
EQGG cn:equalityreflexive
COAGG defn:collinear
COAGH cn:equalitysub
MEAGHD defn:meet
NOMEAGHD
NEHG reductio
ANBEAGB+EEGBAG lemma:extension
ANBEDHC+EEHCDH lemma:extension
ANBEHGE+EEGEHG lemma:extension
BEAGB
BEDHC
BEHGE
NEAB lemma:betweennotequal
NEBA lemma:inequalitysymmetric
NEDC lemma:betweennotequal
NECD lemma:inequalitysymmetric
COAGB defn:collinear
COGAB lemma:collinearorder
COGAa lemma:collinearorder
NEGA lemma:inequalitysymmetric
COABa lemma:collinear4
COGAg lemma:collinearorder
COABg lemma:collinear4
CODHC defn:collinear
COHDC lemma:collinearorder
COHDh
CODCh lemma:collinear4
COCDh lemma:collinearorder
COHDd
CODdC lemma:collinear4
COCDd lemma:collinearorder
COABa
COABg
COCDh
COCDd
MEABCD assumption
ANNEAB+NECD+COABM+COCDM defn:meet
COABM
COCDM
COBAG lemma:collinearorder
COBAM lemma:collinearorder
COAGM lemma:collinear4
COCDH lemma:collinearorder
CODHM lemma:collinear4
COHDM lemma:collinearorder
ANNEAG+NEHD+COAGM+COHDM
MEAGHD defn:meet
NOMEAGHD
NOMEABCD reductio
PRABCD defn:parallel
BEAGB
BECHD axiom:betweennesssymmetry
BEEGH axiom:betweennesssymmetry
ANEAAGHGHD+EAEGBGHD+RTBGHGHD proposition:29
EAAGHGHD
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists