Sindbad~EG File Manager
BEAEB
BECFD
EAAEFEFD
OSAEFD
NEAB lemma:betweennotequal
NECD lemma:betweennotequal
ANBEAHD+COEFH+NCEFA defn:oppositeside
BEAHD
COEFH
NCEFA
COAEB defn:collinear
NEAE lemma:betweennotequal
COCFD defn:collinear
NEFD lemma:betweennotequal
EAEFDAEF lemma:equalanglessymmetric
NCEFD defn:equalangles
NEEF lemma:angledistinct
NEFE lemma:inequalitysymmetric
MEABCD assumption
ANNEAB+NECD+COABG+COCDG defn:meet
COABG
COCDG
COBAG lemma:collinearorder
COBAE lemma:collinearorder
NEBA lemma:inequalitysymmetric
COAGE lemma:collinear4
COAEG lemma:collinearorder
EQFF cn:equalityreflexive
RAEFF lemma:ray4
SUAEFFB defn:supplement
EQEE cn:equalityreflexive
RAFEE lemma:ray4
BEDFC axiom:betweennesssymmetry
SUDFEEC defn:supplement
EAEFDDFE lemma:ABCequalsCBA
EAAEFDFE lemma:equalanglestransitive
EAFEBEFC lemma:supplements
EABEFCFE lemma:equalanglesflip
BEAEG assumption
% The case Euclid does prove
EQEE cn:equalityreflexive
COEFE defn:collinear
BEGEA axiom:betweennesssymmetry
NCEFD
COCDG
COCFD defn:collinear
COCDF lemma:collinearorder
NECD lemma:betweennotequal
CODGF lemma:collinear4
COGFD lemma:collinearorder
EQFG assumption
COAEF cn:equalitysub
COEFA lemma:collinearorder
NEFG reductio
NEGF lemma:inequalitysymmetric
COEFG assumption
COGFE lemma:collinearorder
COFED lemma:collinear4
COEFD lemma:collinearorder
NCEFD
NCEFG reductio
BEDHA axiom:betweennesssymmetry
COEFH
SSDGEF defn:sameside
SSGDEF lemma:samesidesymmetric
EQFF cn:equalityreflexive
COEFF defn:collinear
NCEFD
BEDFC axiom:betweennesssymmetry
OSDEFC defn:oppositeside
OSGEFC lemma:planeseparation
ANBEGRC+COEFR+NCEFG defn:oppositeside
BEGRC
NEFR assumption
COGRC defn:collinear
COCDG
COCGD lemma:collinearorder
COCGR lemma:collinearorder
NEGC lemma:betweennotequal
NECG lemma:inequalitysymmetric
COGCR lemma:collinearorder
COGCD lemma:collinearorder
NEGC lemma:inequalitysymmetric
COEFR
NERF lemma:inequalitysymmetric
COCGR lemma:collinearorder
COCDF lemma:collinearorder
COCDG
CODFG lemma:collinear4
CODFC lemma:collinearorder
NEFD lemma:betweennotequal
NEDF lemma:inequalitysymmetric
COFGC lemma:collinear4
COCGF lemma:collinearorder
COCGD lemma:collinearorder
CORFD lemma:collinear5
CORFE lemma:collinearorder
COFDE lemma:collinear4
COEFD lemma:collinearorder
NCEFD
EQFR reductio
BEGFC cn:equalitysub
COEGF assumption
COEFG lemma:collinearorder
NCEFG
NCEGF reductio
TREGF defn:triangle
AOGEFEFC proposition:16
EAFEBEFC
AOGEFFEB lemma:angleorderrespectscongruence
EQFF cn:equalityreflexive
RAEFF lemma:ray4
RAEGB defn:ray
COGEF assumption
COEGF lemma:collinearorder
NCGEF reductio
EAGEFGEF lemma:equalanglesreflexive
EAGEFBEF lemma:equalangleshelper
NCBEF defn:equalangles
EABEFFEB lemma:ABCequalsCBA
EAGEFFEB lemma:equalanglestransitive
EAFEBGEF lemma:equalanglessymmetric
AOFEBFEB lemma:angleorderrespectscongruence2
NOAOFEBFEB lemma:angletrichotomy
NOBEAEG reductio
RAEAG assumption
EQFF cn:equalityreflexive
RAEFF lemma:ray4
RAEGA lemma:ray5
EAEFDAEF lemma:equalanglessymmetric
EAEFDGEF lemma:equalangleshelper
BEBEA axiom:betweennesssymmetry
ORBEEAG|EQGA|BEEGA lemma:ray1
cases BEBEG:BEEAG|EQGA|BEEGA
case 1:BEEAG
BEBEA
BEBEG lemma:3.7b
qedcase
case 2:EQGA
BEBEG cn:equalitysub
qedcase
case 3:BEEGA
BEBEG axiom:innertransitivity
qedcase
BEBEG cases
BEGEB axiom:betweennesssymmetry
EQEE cn:equalityreflexive
COEFE defn:collinear
COEFG assumption
COABG
COBAG lemma:collinearorder
COAEB defn:collinear
COBAE lemma:collinearorder
COAGE lemma:collinear4
COGEA lemma:collinearorder
COGEF lemma:collinearorder
NEEG lemma:betweennotequal
NEGE lemma:inequalitysymmetric
COEAF lemma:collinear4
COEFA lemma:collinearorder
NCEFA
NCEFG reductio
NCEFA
SSAGEF defn:sameside
SSGAEF lemma:samesidesymmetric
OSAEFD
OSGEFD lemma:planeseparation
ANBEGPD+COEFP+NCEFG defn:oppositeside
BEGPD
COGPD defn:collinear
COEFP
NEPF assumption
NEGD lemma:betweennotequal
COGDP lemma:collinearorder
COCDG
COCFD defn:collinear
COCDF lemma:collinearorder
CODGF lemma:collinear4
COGDF lemma:collinearorder
CODPF lemma:collinear4
COPFD lemma:collinearorder
COPFE lemma:collinearorder
COFDE lemma:collinear4
COFDE assumption
COEFD lemma:collinearorder
NCFDE reductio
EQPF reductio
BEGFD cn:equalitysub
RAEAG
COFEA assumption
COEFA lemma:collinearorder
NCFEA reductio
EAFEAFEA lemma:equalanglesreflexive
EAFEAFEG lemma:equalangleshelper
EAFEGFEA lemma:equalanglessymmetric
NCFEG defn:equalangles
BEGFD
COEGF assumption
COFEG lemma:collinearorder
NCEGF reductio
TREGF defn:triangle
AOGEFEFD proposition:16
AOEFDEFD lemma:angleorderrespectscongruence2
NOAOEFDEFD lemma:angletrichotomy
NORAEAG reductio
OREQAE|EQAG|EQEG|BEEAG|BEAEG|BEAGE defn:collinear
cases NOMEABCD:EQAE|EQAG|EQEG|BEEAG|BEAEG|BEAGE
case 1:EQAE
MEABCD assumption
NEAE
NOMEABCD reductio
qedcase
case 2:EQAG
NEHF assumption
COCDG
COCDF lemma:collinearorder
NECD
CODGF lemma:collinear4
CODAF cn:equalitysub
COAHD defn:collinear
CODAH lemma:collinearorder
NEAD lemma:betweennotequal
NEDA lemma:inequalitysymmetric
COAFH lemma:collinear4
COHFA lemma:collinearorder
COEFH
COHFE lemma:collinearorder
COFAE lemma:collinear4
COEFA lemma:collinearorder
NCEFA
EQHF reductio
BEAFD cn:equalitysub
COEAF assumption
COEFA lemma:collinearorder
NCEAF reductio
TREAF defn:triangle
AOAEFEFD proposition:16
EAEFDAEF lemma:equalanglessymmetric
AOEFDEFD lemma:angleorderrespectscongruence2
MEABCD assumption
NOAOEFDEFD lemma:angletrichotomy
NOMEABCD reductio
qedcase
case 3:EQEG
COCDE cn:equalitysub
COCDF lemma:collinearorder
CODEF lemma:collinear4
COEFD lemma:collinearorder
COEFH
NEEF assumption
COFDH lemma:collinear4
CODHF lemma:collinearorder
COAHD defn:collinear
CODHA lemma:collinearorder
NEHD lemma:betweennotequal
NEDH lemma:inequalitysymmetric
COHFA lemma:collinear4
COEFH
COHFE lemma:collinearorder
NEHF assumption
COFAE lemma:collinear4
COEFA lemma:collinearorder
NCEFA
EQHF reductio
COAHD defn:collinear
COAFD cn:equalitysub
CODFA lemma:collinearorder
CODFC lemma:collinearorder
NEHD lemma:betweennotequal
NEDH lemma:inequalitysymmetric
NEDF cn:equalitysub
COFAC lemma:collinear4
COCFA lemma:collinearorder
COCDG
CODCG lemma:collinearorder
COCDF lemma:collinearorder
CODCF lemma:collinearorder
NEDC lemma:inequalitysymmetric
COCGF lemma:collinear4
COCFG lemma:collinearorder
NECF assumption
COFAG lemma:collinear4
COFAE cn:equalitysub
COEFA lemma:collinearorder
EQCF reductio
COAHD defn:collinear
COACD cn:equalitysub
COCDA lemma:collinearorder
COFDA cn:equalitysub
COCDE cn:equalitysub
COFDE cn:equalitysub
CODFE lemma:collinearorder
CODFA lemma:collinearorder
NEDF cn:equalitysub
COFEA lemma:collinear4
COEFA lemma:collinearorder
EQEF reductio
COEFA defn:collinear
MEABCD assumption
NCEFA
NOMEABCD reductio
qedcase
case 4:BEEAG
NEEA lemma:betweennotequal
RAEAG lemma:ray4
MEABCD assumption
NORAEAG
NOMEABCD reductio
qedcase
case 5:BEAEG
MEABCD assumption
NOBEAEG
NOMEABCD reductio
qedcase
case 6:BEAGE
BEEGA axiom:betweennesssymmetry
NEEA lemma:betweennotequal
RAEAG lemma:ray4
MEABCD assumption
NORAEAG
NOMEABCD reductio
qedcase
NOMEABCD cases
NOMEABCD reductio
% That is Euclid's conclusion.
EQAA cn:equalityreflexive
COABA defn:collinear
COABE defn:collinear
EQDD cn:equalityreflexive
COCDD defn:collinear
COCDF defn:collinear
NEAE lemma:betweennotequal
NEFD lemma:betweennotequal
BEAHD
BEEHF lemma:collinearbetween
BEFHE axiom:betweennesssymmetry
ANNEAB+NECD+COABA+COABE+NEAE+COCDF+COCDD+NEFD+NOMEABCD+BEAHD+BEFHE
PRABCD defn:parallel
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists