Sindbad~EG File Manager
BEAEB
BECED
NCAEC
NEED lemma:betweennotequal
NEDE lemma:inequalitysymmetric
NEEB lemma:betweennotequal
NEBE lemma:inequalitysymmetric
COBED assumption
COAEB defn:collinear
COBEA lemma:collinearorder
COEAD lemma:collinear4
COCED defn:collinear
CODEC lemma:collinearorder
CODEA lemma:collinearorder
COECA lemma:collinear4
COAEC lemma:collinearorder
NCBED reductio
EQDD cn:equalityreflexive
EQBB cn:equalityreflexive
EQCC cn:equalityreflexive
RAEDD lemma:ray4
RAEBB lemma:ray4
BEBEA axiom:betweennesssymmetry
SUBEDDA defn:supplement
BEDEC axiom:betweennesssymmetry
SUDEBBC defn:supplement
COAED assumption
COCED defn:collinear
CODEC lemma:collinearorder
CODEA lemma:collinearorder
NEDE
COECA lemma:collinear4
COAEC lemma:collinearorder
NCAED reductio
EABEDDEB lemma:ABCequalsCBA
EADEABEC lemma:supplements
COBEC assumption
COAEB defn:collinear
COBEA lemma:collinearorder
NEBE
COEAC lemma:collinear4
COAEC lemma:collinearorder
NCBEC reductio
EABECCEB lemma:ABCequalsCBA
EADEACEB lemma:equalanglestransitive
EAAEDDEA lemma:ABCequalsCBA
EAAEDCEB lemma:equalanglestransitive
EACEBAED lemma:equalanglessymmetric
% Now switch C and D
EQEC assumption
COBEC defn:collinear
NEEC reductio
RAECC lemma:ray4
SUBECCA defn:supplement
BECED axiom:betweennesssymmetry
SUCEBBD defn:supplement
COAEC assumption
CODEC defn:collinear
COCED lemma:collinearorder
COCEA lemma:collinearorder
NECE lemma:betweennotequal
COEDA lemma:collinear4
COAED lemma:collinearorder
NCAEC reductio
EABECCEB lemma:ABCequalsCBA
EACEABED lemma:supplements
COBED assumption
COAEB defn:collinear
COBEA lemma:collinearorder
NEBE
COEAD lemma:collinear4
COAED lemma:collinearorder
NCBED reductio
EABEDDEB lemma:ABCequalsCBA
EACEADEB lemma:equalanglestransitive
EAAECCEA lemma:ABCequalsCBA
EAAECDEB lemma:equalanglestransitive
ANEAAECDEB+EACEBAED
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists