Sindbad~EG File Manager
EEABab
EEACac
EABACbac
NCbac lemma:equalanglesNC
ANRAABU+RAACV+RAabu+RAacv+EEAUau+EEAVav+EEUVuv+NCBAC defn:equalangles
RAABU
RAabu
RAacv
EEAVav
EEUVuv
NCBAC
NEab lemma:ray2
NEba lemma:inequalitysymmetric
COABC assumption
COBAC lemma:collinearorder
NCABC reductio
EQAB assumption
COABC defn:collinear
COBAC lemma:collinearorder
NEAB reductio
EQAC assumption
COABC defn:collinear
COBAC lemma:collinearorder
NEAC reductio
NECA lemma:inequalitysymmetric
EQac assumption
CObac defn:collinear
NEac reductio
NEca lemma:inequalitysymmetric
EQbc assumption
CObac defn:collinear
NEbc reductio
NEcb lemma:inequalitysymmetric
EQBC assumption
COABC defn:collinear
COBAC lemma:collinearorder
NEBC reductio
NECB lemma:inequalitysymmetric
ORBEAUB|EQBU|BEABU lemma:ray1
cases EEBVbv:BEAUB|EQBU|BEABU
case 1:BEAUB
EEAUau
EEABab
EEAUAU cn:congruencereflexive
LTAUAB defn:lessthan
LTAUab lemma:lessthancongruence
ANBEawb+EEawAU defn:lessthan
BEawb
EEawAU
EEawau lemma:congruencetransitive
NEab lemma:betweennotequal
RAabw lemma:ray4
EEawau lemma:congruencetransitive
EQwu lemma:layoffunique
BEaub cn:equalitysub
EEUBub lemma:differenceofparts
EEUVuv
EEAVav
EEAUau
EEVBvb axiom:5-line
EEBVbv lemma:congruenceflip
qedcase
case 2:EQBU
EEUVuv
EEBVuv cn:equalitysub
EEabAB lemma:congruencesymmetric
EEABAB cn:congruencereflexive
EEABAU cn:equalitysub
EEAUau
EEabAU lemma:congruencetransitive
EEabau lemma:congruencetransitive
ORBEaub|EQbu|BEabu lemma:ray1
cases EQbu:BEaub|EQbu|BEabu
case 1: BEaub
NEbu assumption
NOEEauab lemma:partnotequalwhole
EEauab lemma:congruencesymmetric
EQbu reductio
qedcase
case 2: EQbu
qedcase
case 3: BEabu
NEbu assumption
NOEEabau lemma:partnotequalwhole
EEabAB lemma:congruencesymmetric
EEABAB cn:congruencereflexive
EEABAU cn:equalitysub
EEAUau
EEABau lemma:congruencetransitive
EEabau lemma:congruencetransitive
EQbu reductio
qedcase
EQbu cases
EEUVuv
EEBVbv cn:equalitysub
qedcase
case 3: BEABU
EEAUau
EEABAB cn:congruencereflexive
LTABAU defn:lessthan
LTABau lemma:lessthancongruence
ANBEafu+EEafAB defn:lessthan
BEafu
NEau lemma:betweennotequal
RAauf lemma:ray4
RAabu
RAaub lemma:ray5
RAabf lemma:ray3
EEafAB
EEABab
EEafab lemma:congruencetransitive
EQfb lemma:layoffunique
BEabu cn:equalitysub
EEBUbu lemma:differenceofparts
BEabu lemma:betweennesspreserved
EEABab
EEBUbu lemma:differenceofparts
EEAVav
EEUVuv
EEBVbv lemma:interior5
qedcase
EEBVbv cases
RAACV
ORBEAVC|EQCV|BEACV lemma:ray1
cases EEBCbc:BEAVC|EQCV|BEACV
case 1: BEAVC
EEAVav
EEAVAV cn:congruencereflexive
LTAVAC defn:lessthan
LTAVac lemma:lessthancongruence
ANBEagc+EEagAV defn:lessthan
BEagc
NEag lemma:betweennotequal
RAagc lemma:ray4
RAacg lemma:ray5
RAacv
EEagAV
EEagav lemma:congruencetransitive
EQgv lemma:layoffunique
BEavc cn:equalitysub
EEVCvc lemma:differenceofparts
EEABab
EEAVav
EEVCvc
EEVBvb lemma:congruenceflip
EEBCbc axiom:5-line
qedcase
case 2: EQCV
EEAVav
EEACav cn:equalitysub
EEACac
EEacAC lemma:congruencesymmetric
EEacav lemma:congruencetransitive
RAacv
NEac lemma:ray2
EQcc cn:equalityreflexive
RAacc lemma:ray4
EQcv lemma:layoffunique
EEBCbv cn:equalitysub
EEBCbc cn:equalitysub
qedcase
case 3: BEACV
EEAVav
EEACAC cn:congruencereflexive
LTACAV defn:lessthan
LTACav lemma:lessthancongruence
ANBEagv+EEagAC defn:lessthan
BEagv
EEagAC
NEag lemma:betweennotequal
RAagv lemma:ray4
RAavg lemma:ray5
EEagac lemma:congruencetransitive
EEacag lemma:congruencesymmetric
RAavc lemma:ray5
EQcg lemma:layoffunique
BEacv cn:equalitysub
EECVcv lemma:differenceofparts
EEABab
EEVBvb lemma:congruenceflip
EECBcb lemma:interior5
EEBCbc lemma:congruenceflip
qedcase
EEBCbc cases
EQAA cn:equalityreflexive
EQCC cn:equalityreflexive
EQaa cn:equalityreflexive
EQcc cn:equalityreflexive
EQBB cn:equalityreflexive
EQbb cn:equalityreflexive
NEBA lemma:inequalitysymmetric
RABAA lemma:ray4
RABCC lemma:ray4
RAbaa lemma:ray4
RAbcc lemma:ray4
EEBAba lemma:congruenceflip
EEBCbc
EEACac
NCABC
EAABCabc defn:equalangles
RACAA lemma:ray4
RACBB lemma:ray4
RAcaa lemma:ray4
RAcbb lemma:ray4
EECAca lemma:congruenceflip
EECBcb lemma:congruenceflip
EEABab
COACB assumption
COABC lemma:collinearorder
NCABC
NCACB reductio
EAACBacb defn:equalangles
ANEEBCbc+EAABCabc+EAACBacb
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists