Sindbad~EG File Manager
TPABcd
BECcd
NECc lemma:betweennotequal
NEcd lemma:betweennotequal
NECd lemma:betweennotequal
ANNEAB+NEcd+NOMEABcd+SScdAB defn:tarski_parallel
NEAB
NEcd
SScdAB
ANCOABp+COABr+BEcpq+BEdrq+NCABc+NCABd defn:sameside
COABp
COABr
BEcpq
BEdrq
NCABc
NCABd
BEqrd axiom:betweennesssymmetry
COCcd defn:collinear
COcdC lemma:collinearorder
BEdcC axiom:betweennesssymmetry
BEqrd
BEqpc axiom:betweennesssymmetry
EQpr assumption
COqrd defn:collinear
COqpc defn:collinear
COqpd cn:equalitysub
NEqp lemma:betweennotequal
COpcd lemma:collinear4
COcdp lemma:collinearorder
MEABcd defn:meet
NOMEABcd
NEpr reductio
COqpc defn:collinear
COqdC assumption
COdcC defn:collinear
COCdc lemma:collinearorder
COCdq lemma:collinearorder
NECd lemma:betweennotequal
COdcq lemma:collinear4
COcqd lemma:collinearorder
COcqp lemma:collinearorder
NEqc lemma:betweennotequal
NEcq lemma:inequalitysymmetric
COqdp lemma:collinear4
COqrd defn:collinear
COqdr lemma:collinearorder
NEqd lemma:betweennotequal
COdpr lemma:collinear4
COABp
COABr
COBpr lemma:collinear4
COBAp lemma:collinearorder
COBpA lemma:collinearorder
COBAr lemma:collinearorder
NEBA lemma:inequalitysymmetric
COApr lemma:collinear4
NEBp assumption
COprA lemma:collinear4
COprd lemma:collinearorder
COrAd lemma:collinear4
COrAB lemma:collinearorder
NErA assumption
COAdB lemma:collinear4
COABd lemma:collinearorder
NCABd
EQrA reductio
COpAd cn:equalitysub
COpAB lemma:collinearorder
NEpA assumption
COAdB lemma:collinear4
COABd lemma:collinearorder
EQpA reductio
EQrp cn:equalitytransitive
COqpc
COqrd
COqpd cn:equalitysub
NEqp lemma:betweennotequal
COpcd lemma:collinear4
COcdp lemma:collinearorder
MEABcd defn:meet
NOMEABcd
EQBp reductio
COrAB lemma:collinearorder
COdBr cn:equalitysub
COrBd lemma:collinearorder
COrBA lemma:collinearorder
NErB assumption
COBdA lemma:collinear4
COABd lemma:collinearorder
EQrB reductio
EQpB lemma:equalitysymmetric
EQpr cn:equalitytransitive
NEpr
NCqdC reductio
ANBEqEc+BECEr postulate:Pasch-inner
BEqEc
COqEc defn:collinear
COqcp lemma:collinearorder
COqcE lemma:collinearorder
NEqc lemma:betweennotequal
COcpE lemma:collinear4
NErp lemma:inequalitysymmetric
ANBErpJ+EEpJrp lemma:extension
BErpJ
BEJpr axiom:betweennesssymmetry
COJpr defn:collinear
NEJr lemma:betweennotequal
NEpr lemma:betweennotequal
NEJp lemma:betweennotequal
BECEr
COABp
COABr
COBpr lemma:collinear4
COBAp lemma:collinearorder
COBAr lemma:collinearorder
NEBA lemma:inequalitysymmetric
COApr lemma:collinear4
COprA lemma:collinearorder
COprB lemma:collinearorder
MECdJr assumption
ANNECd+NEJr+COCdK+COJrK defn:meet
NECd
NEJr
COCdK
COJrK
COCcd defn:collinear
COCdc lemma:collinearorder
NEcd lemma:betweennotequal
NEdc lemma:inequalitysymmetric
COdcK lemma:collinear4
COcdK lemma:collinearorder
COrJp lemma:collinearorder
NErJ lemma:betweennotequal
COrJK lemma:collinearorder
COJpK lemma:collinear4
COJpr lemma:collinearorder
NEpJ lemma:betweennotequal
NEJp lemma:inequalitysymmetric
COpKr lemma:collinear4
COprK lemma:collinearorder
COprA
COprB
COABK lemma:collinear5
MEABcd defn:meet
NOMEABcd
NOMECdJr reductio
BEcEp lemma:collinearbetween
BEpEc axiom:betweennesssymmetry
BEqpE axiom:innertransitivity
NEpr
NCprc lemma:NChelper
NCpcr lemma:NCorder
COqpc defn:collinear
COpcq lemma:collinearorder
EQcc cn:equalityreflexive
COpcc defn:collinear
NEqc lemma:betweennotequal
NCqcr lemma:NChelper
NCqrc lemma:NCorder
NEqd lemma:betweennotequal
EQqq cn:equalityreflexive
COdcC lemma:collinearorder
NECd lemma:betweennotequal
NEdC lemma:inequalitysymmetric
NCdqC lemma:NCorder
COqrd defn:collinear
COdqr lemma:collinearorder
COdqq defn:collinear
EQrC assumption
COcdC
COABr
COABC cn:equalitysub
MEABcd defn:meet
NOMEABcd
NErC reductio
EQrq assumption
COrqc defn:collinear
COqrc lemma:collinearorder
NErq reductio
NCrqC lemma:NChelper
NCrCq lemma:NCorder
BErEC axiom:betweennesssymmetry
BEqpE
ANBEqFC+BErpF postulate:Pasch-outer
BEqFC
BECFq axiom:betweennesssymmetry
BErpF
COrpF defn:collinear
COrpA lemma:collinearorder
COrpB lemma:collinearorder
COABF lemma:collinear5
NCqCr lemma:NCorder
COqFC defn:collinear
COqCF lemma:collinearorder
EQCC cn:equalityreflexive
COqCC defn:collinear
NEFC lemma:betweennotequal
NCFCr lemma:NChelper
NCFrC lemma:NCorder
COABr
COABp
COprA lemma:collinearorder
COprF lemma:collinearorder
NEpr lemma:betweennotequal
COrAF lemma:collinear4
COFrA lemma:collinearorder
COBAr lemma:collinearorder
COBAp lemma:collinearorder
COABr lemma:collinearorder
COABp lemma:collinearorder
COprB lemma:collinearorder
COrBF lemma:collinear4
COFrB lemma:collinearorder
NCABC lemma:NChelper
SSCdAB defn:sameside
MEABCd assumption
ANNEAB+NECd+COABK+COCdK defn:meet
NEAB
COABK
COCdK
COCdc lemma:collinearorder
NECd lemma:betweennotequal
COdcK lemma:collinear4
COcdK lemma:collinearorder
MEABcd defn:meet
NOMEABcd
NOMEABCd reductio
NECd lemma:betweennotequal
TPABCd defn:tarski_parallel
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists