Sindbad~EG File Manager
AOCBDCBA
SSADBC
ANBEcma+RABCc+RABAa+EACBDCBm defn:anglelessthan
BEcma
RABCc
RABAa
EACBDCBm
NCCBm lemma:equalanglesNC
NEBm lemma:NCdistinct
NCBCD defn:sameside
NEBD lemma:NCdistinct
NEDB lemma:inequalitysymmetric
ANRABmd+EEBdBD lemma:layoff
RABmd
EEBdBD
EEBCBC cn:congruencereflexive
NCCBD lemma:NCorder
TRCBD defn:triangle
EEBDBd lemma:congruencesymmetric
NEBd lemma:nullsegment3
NCBmC lemma:NCorder
COBmd lemma:rayimpliescollinear
EQBB cn:equalityreflexive
COBmB defn:collinear
NCBdC lemma:NChelper
NCCBd lemma:NCorder
TRCBd defn:triangle
EEBCBC cn:congruencereflexive
RABmd
EQCC cn:equalityreflexive
NEBC lemma:NCdistinct
RABCC lemma:ray4
EACBDCBm
RABmd
EACBDCBd lemma:equalangleshelper
EECDCd proposition:04
SSADBC
SSDABC lemma:samesidesymmetric
RABaA lemma:ray5
EQBB cn:equalityreflexive
COBBC defn:collinear
SSDaBC lemma:sameside2
BEcma
NEcm lemma:betweennotequal
RAcma lemma:ray4
RAcam lemma:ray5
COBCc lemma:rayimpliescollinear
COBcC lemma:collinearorder
SSDmBC lemma:sameside2
SSDmBC
SSDdBC lemma:sameside2
NEBC
EEDBdB lemma:congruenceflip
EEDCdC lemma:congruenceflip
EQDd proposition:07
RABaA lemma:ray5
RABcC lemma:ray5
NCBCA defn:sameside
NCABC lemma:NCorder
COBAa lemma:rayimpliescollinear
COABa lemma:collinearorder
EQBB cn:equalityreflexive
COABB defn:collinear
NEBa lemma:raystrict
NEaB lemma:inequalitysymmetric
NCaBC lemma:NChelper
NCBCa lemma:NCorder
COBCc lemma:rayimpliescollinear
COBCB defn:collinear
NEBc lemma:raystrict
NCBca lemma:NChelper
NCaBc lemma:NCorder
TRaBc defn:triangle
BEamc axiom:betweennesssymmetry
RABaA
RABcC
ANRABmM+BEAMC lemma:crossbar
RABmM
BEAMC
RABmD cn:equalitysub
RABDM lemma:ray3
ANBEAMC+RABDM
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists