Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/incenter.prf

TRABC
EAABHHBC
EABCJJCA
BEAHC
BEAJB 
BECHA            axiom:betweennesssymmetry
NCABC            defn:triangle
NCCAB            lemma:NCorder
BEBJA            axiom:betweennesssymmetry
ANBECDJ+BEBDH    postulate:Pasch-inner
BECDJ
BEBDH 

COABH           assumption
 COHAB         lemma:collinearorder
 COAHC         defn:collinear
 COHAC         lemma:collinearorder
 NEAH          lemma:betweennotequal
 NEHA          lemma:inequalitysymmetric
 COABC         lemma:collinear4
NCABH           reductio
EAABHABH        lemma:equalanglesreflexive
NEBH            lemma:betweennotequal
NEAB            lemma:NCdistinct
NEBA            lemma:inequalitysymmetric
RABHD           lemma:ray4
EQAA            cn:equalityreflexive
RABAA           lemma:ray4
EAABHABD     lemma:equalangleshelper
NCABD           lemma:equalanglesNC
COBCJ           assumption
 COJBC          lemma:collinearorder
 COAJB          defn:collinear
 COJBA          lemma:collinearorder
 NEJB           lemma:betweennotequal
 COBCA          lemma:collinear4
 COABC          lemma:collinearorder
NCBCJ           reductio
EABCJBCJ        lemma:equalanglesreflexive
NECJ            lemma:NCdistinct
NECD            lemma:betweennotequal
RACJD           lemma:ray4
NECA            lemma:NCdistinct
EQBB            cn:equalityreflexive
NECB            lemma:NCdistinct
RACBB           lemma:ray4
EABCJBCD        lemma:equalangleshelper
NCBCD           lemma:equalanglesNC

NCABC           defn:triangle
NCBCA           lemma:NCorder
NEDH            lemma:betweennotequal
NEHD            lemma:inequalitysymmetric
BEHDB           axiom:betweennesssymmetry
COHDB           defn:collinear
CODHB           lemma:collinearorder
COAHC           defn:collinear
COACH           lemma:collinearorder
NEAC            lemma:betweennotequal
COACD           assumption
 COCHD          lemma:collinear4
 CODHC          lemma:collinearorder
 NEDH           lemma:betweennotequal
 COHBC          lemma:collinear4
 COHCB          lemma:collinearorder
 COHCA          lemma:collinearorder
 NEHC           lemma:betweennotequal
 COCBA          lemma:collinear4
 COABC          lemma:collinearorder
NCACD           reductio
NEBC            lemma:NCdistinct
NCCJB           lemma:NCorder
EQCC            cn:equalityreflexive
COCJC           defn:collinear
COCDJ           defn:collinear
COCJD           lemma:collinearorder
NEDJ            lemma:betweennotequal
NEJD            lemma:inequalitysymmetric
NECD            lemma:betweennotequal
NCCDB           lemma:NChelper
NCBCD           lemma:NCorder
PADFBCF         proposition:12
ANCODFF+COBCF+COBCP+RRPFD defn:perpat
COBCF
COBCP
RRPFD
NCCBD          lemma:NCorder
EACBDCBD        lemma:equalanglesreflexive
EQCC            cn:equalityreflexive
RABCC           lemma:ray4
NEBD            lemma:betweennotequal
RABDH           lemma:ray4
EACBDCBH        lemma:equalangleshelper
EQHH            cn:equalityreflexive
COBHH           defn:collinear
NCBHA           lemma:NCorder
OSABHC         defn:oppositeside
OSCBHA         lemma:oppositesidesymmetric
EQBF            assumption
 RRPBD          cn:equalitysub
 RRDBP          lemma:8.2
 NEBP           defn:rightangle
 NEPB           lemma:inequalitysymmetric
 COPBC          lemma:collinearorder
 RRCBD          lemma:collinearright
 EACBHCBD       lemma:equalanglessymmetric
 RRCBH          lemma:equaltorightisright
 RRHBC          lemma:8.2
 EAHBCABH       lemma:equalanglessymmetric
 RRABH          lemma:equaltorightisright
 BEABC          lemma:rightcollinear
 COABC          defn:collinear
NEBF            reductio
COCBP           lemma:collinearorder
COCBF           lemma:collinearorder
COBPF           lemma:collinear4
COPFB           lemma:collinearorder
RRBFD           lemma:collinearright
NCBFD           lemma:rightangleNC
NCBAD           lemma:NCorder
PADEBAE          proposition:12
ANCODEE+COBAE+COBAQ+RRQED defn:perpat
COBAE
COBAQ
RRQED
NCABD          lemma:NCorder
EAABDABD        lemma:equalanglesreflexive
EQAA            cn:equalityreflexive
RABAA           lemma:ray4
EAABDABH        lemma:equalangleshelper
EQBE            assumption
 RRQBD          cn:equalitysub
 RRDBQ          lemma:8.2
 NEBQ           defn:rightangle
 NEQB           lemma:inequalitysymmetric
 COQBA          lemma:collinearorder
 RRABD          lemma:collinearright
 EAABHABD       lemma:equalanglessymmetric
 RRABH          lemma:equaltorightisright
 RRHBA          lemma:8.2
 EAHBACBH       lemma:equalanglesflip
 EACBHHBA       lemma:equalanglessymmetric
 RRCBH          lemma:equaltorightisright
 BECBA          lemma:rightcollinear
 COCBA          defn:collinear
 COABC          lemma:collinearorder
NEBE            reductio
COABQ           lemma:collinearorder
COABE           lemma:collinearorder
COBQE           lemma:collinear4
COQEB           lemma:collinearorder
RRBED           lemma:collinearright
EQBB            cn:equalityreflexive
COBEB           defn:collinear
RRBED           lemma:collinearright
NCBED           lemma:rightangleNC 
EABEDBFD        lemma:Euclid4
EEBDBD          cn:congruencereflexive
NCBED           lemma:rightangleNC
NCDBE           lemma:NCorder
TRDBE           defn:triangle
NCBFD           lemma:rightangleNC
NCDBF           lemma:NCorder
TRDBF           defn:triangle
RABHD           lemma:ray4
COBFC           lemma:collinearorder
NCDBC           lemma:NCorder
BECDJ
NCCBJ           lemma:NCorder
EAABHHBC
EAHBCABH       lemma:equalanglessymmetric
EAABHABH       lemma:equalanglesreflexive
RABAJ          lemma:ray4
RABHD          lemma:ray4
EAABHJBD       lemma:equalangleshelper
COJBD          assumption
 CODJB         lemma:collinearorder
 CODJC         lemma:collinearorder
 NEJB          lemma:betweennotequal
 COJBC         lemma:collinear4
 COCBJ         lemma:collinearorder
NCJBD          reductio
EAJBDDBJ       lemma:ABCequalsCBA
EAABHDBJ       lemma:equalanglestransitive
COHBC          assumption
 COHCB         lemma:collinearorder
 COAHC         defn:collinear
 COHCA         lemma:collinearorder
 NEHC          lemma:betweennotequal
 COCBA         lemma:collinear4
 COABC         lemma:collinearorder
NCHBC          reductio  
EAHBCHBC       lemma:equalanglesreflexive
RABHD
EQCC           cn:equalityreflexive
RABCC          lemma:ray4
EAHBCDBC       lemma:equalangleshelper
EADBCHBC       lemma:equalanglessymmetric
NCCBD
EACBDDBC       lemma:ABCequalsCBA
EACBDHBC       lemma:equalanglestransitive
NCDBC
EADBCCBD       lemma:ABCequalsCBA
EAHBCCBD       lemma:equalanglestransitive
EADBJABH       lemma:equalanglessymmetric
EACBDABH       lemma:equalanglestransitive
EACBDDBJ       lemma:equalanglestransitive
AOCBDBFD        lemma:halfanglelessthanright
EADBCCBD       lemma:ABCequalsCBA
AODBCBFD       lemma:angleorderrespectscongruence2
RRDFB          lemma:8.2
RABFC          lemma:acutebetween
RABCF          lemma:ray5
EAABHDBF       lemma:equalangleshelper
EADBFABH       lemma:equalanglessymmetric

EQAA           cn:equalityreflexive
RABAA          lemma:ray4
COHBA          assumption
 COHAB         lemma:collinearorder
 COAHC         defn:collinear
 COHAC         lemma:collinearorder
 NEAH          lemma:betweennotequal
 NEHA          lemma:inequalitysymmetric
 COABC         lemma:collinear4
NCHBA          reductio
EAHBAHBA       lemma:equalanglesreflexive
EAHBADBA       lemma:equalangleshelper
EADBAHBA       lemma:equalanglessymmetric
EAHBAABH       lemma:ABCequalsCBA
EADBAABH       lemma:equalanglestransitive 
NCABD
EAABDDBA       lemma:ABCequalsCBA
EAABDHBA       lemma:equalanglestransitive
NCDBA          lemma:NCorder
EADBAABD       lemma:ABCequalsCBA
EAHBAABD       lemma:equalanglestransitive
RRDEB          lemma:8.2
COBEA          lemma:collinearorder
AOABHBED        lemma:halfanglelessthanright
AODBABED       lemma:angleorderrespectscongruence2
NCABH           lemma:NCorder
RABEA          lemma:acutebetween
RABAE          lemma:ray5
RABHD         lemma:ray4
EADBFEBD      lemma:equalangleshelper
NCDEB         lemma:rightangleNC
NCEBD         lemma:NCorder
EAEBDDBE      lemma:ABCequalsCBA
EADBFDBE      lemma:equalanglestransitive
EABFDBED      lemma:equalanglessymmetric
TRDBF          defn:triangle
TRDBE          defn:triangle
EEDBDB        cn:congruencereflexive
EEDFDE          proposition:26B
EEBFBE          proposition:26B

PADGACG         proposition:12
ANCODGG+COACG+COACS+RRSGD defn:perpat
COACG
COACS
RRSGD
NCACD 
EQAA           cn:equalityreflexive          
RACAA          lemma:ray4
RACDJ          lemma:ray4
EAACDACD        lemma:equalanglesreflexive
EAACDACJ        lemma:equalangleshelper
BEBJA           axiom:betweennesssymmetry
EQJJ            cn:equalityreflexive
COCJJ           defn:collinear
NCCJB
OSBCJA          defn:oppositeside
EQCG            assumption
 RRSCD          cn:equalitysub
 RRDCS          lemma:8.2
 NECS           defn:rightangle
 NESC          lemma:inequalitysymmetric
 COSCA          lemma:collinearorder
 RRACD          lemma:collinearright
 EAACJACD       lemma:equalanglessymmetric
 RRACJ          lemma:equaltorightisright
 RRJCA          lemma:8.2  
 EABCJJCA             
 RRBCJ          lemma:equaltorightisright 
 RRJCB           lemma:8.2             
 BEBCA          lemma:rightcollinear
 COBCA          defn:collinear
 COABC          lemma:collinearorder
NECG            reductio
COACG
COACS
NEAC
COCGS           lemma:collinear4
COSGC           lemma:collinearorder
RRCGD           lemma:collinearright
EQCC            cn:equalityreflexive
COCGC           defn:collinear
RRCGD           lemma:collinearright
NCCGD           lemma:rightangleNC 
RRBFD
COBFC

COCBF           lemma:collinearorder
COCBP           lemma:collinearorder
NCBCD          lemma:NCorder
EABCDBCD        lemma:equalanglesreflexive
EQBB            cn:equalityreflexive
RACBB           lemma:ray4
NECD            lemma:betweennotequal
RACDJ           lemma:ray4
EABCDBCJ        lemma:equalangleshelper
EQJJ            cn:equalityreflexive
COCJJ           defn:collinear
COCJA           assumption
 COJAC          lemma:collinearorder
 COAJB          defn:collinear
 COJAB          lemma:collinearorder
 NEAJ           lemma:betweennotequal
 NEJA           lemma:inequalitysymmetric
 COACB          lemma:collinear4
 COABC          lemma:collinearorder
NCCJA           reductio
OSACJB         defn:oppositeside
OSBCJA         lemma:oppositesidesymmetric

EQCF            assumption
 RRPCD          cn:equalitysub
 RRDCP          lemma:8.2
 NECP           defn:rightangle
 NEPC           lemma:inequalitysymmetric
 COPCB          lemma:collinearorder
 RRBCD          lemma:collinearright
 EABCJBCD       lemma:equalanglessymmetric
 RRBCJ          lemma:equaltorightisright
 RRJCB          lemma:8.2
 EABCJJCA 
 EAJCABCJ       lemma:equalanglessymmetric     
 RRJCA          lemma:equaltorightisright
 RRACJ          lemma:8.2
 BEACB          lemma:rightcollinear
 COACB          defn:collinear
 COABC          lemma:collinearorder
NECF            reductio
RRCFD           lemma:collinearright

EACGDCFD        lemma:Euclid4
EECDCD          cn:congruencereflexive
NCCGD           lemma:rightangleNC
NCDCG           lemma:NCorder
TRDCG           defn:triangle
NCCGD           lemma:rightangleNC
NCDCG           lemma:NCorder
%TRDCF           defn:triangle
RACJD           lemma:ray4
COCFB           lemma:collinearorder
NCDCB           lemma:NCorder
BECDJ
NCBCJ           lemma:NCorder
EAJCBACJ       lemma:equalanglesflip
EAACJJCB       lemma:equalanglessymmetric
EAJCBACJ       lemma:equalanglessymmetric
COACJ          assumption
 COJAC         lemma:collinearorder
 COAJB         defn:collinear
 COJAB         lemma:collinearorder
 NEAJ          lemma:betweennotequal
 NEJA          lemma:inequalitysymmetric
 COACB         lemma:collinear4
 COABC         lemma:collinearorder
NCACJ          reductio
EAACJACJ       lemma:equalanglesreflexive
RACAH          lemma:ray4
RACJD          lemma:ray4
EAACJHCD      lemma:equalangleshelper
COHCD          assumption
 CODHC         lemma:collinearorder
 CODHB         lemma:collinearorder
 NEHC          lemma:betweennotequal
 COHCB         lemma:collinear4
 COAHC         defn:collinear
 COHCA         lemma:collinearorder
 NEHC          lemma:betweennotequal
 COCBA         lemma:collinear4
 COABC         lemma:collinearorder
NCHCD          reductio
EAHCDDCH       lemma:ABCequalsCBA      
EAACJDCH        lemma:equalanglestransitive
COJCB          assumption
 COJBC         lemma:collinearorder
 COAJB         defn:collinear
 COJBA         lemma:collinearorder
 NEJB          lemma:betweennotequal
 COBCA         lemma:collinear4
 COABC         lemma:collinearorder
NCJCB          reductio 
EAJCBJCB      lemma:equalanglesreflexive
RACJD
EQBB           cn:equalityreflexive
RACBB          lemma:ray4
EAJCBDCB       lemma:equalangleshelper     
EADCBJCB       lemma:equalanglessymmetric
NCBCD     
EABCDDCB       lemma:ABCequalsCBA     
EABCDJCB       lemma:equalanglestransitive
NCDCB    
EADCBBCD       lemma:ABCequalsCBA       
EAJCBBCD       lemma:equalanglestransitive     
EADCHACJ        lemma:equalanglessymmetric     
EABCDACJ        lemma:equalanglestransitive      
EABCDDCH       lemma:equalanglestransitive 
COBCH          assumption
 COAHC         defn:collinear
 COHCA        lemma:collinearorder
 COHCB        lemma:collinearorder
 NEHC         lemma:betweennotequal
 COCAB        lemma:collinear4
 COABC        lemma:collinearorder 
NCBCH          reductio
RRCFD
BEBDH
AOBCDCFD       lemma:halfanglelessthanright
EADCBBCD       lemma:ABCequalsCBA  
AODCBCFD       lemma:angleorderrespectscongruence2
RRDFC          lemma:8.2
RACFB          lemma:acutebetween
RACBF          lemma:ray5
EAACJDCF     lemma:equalangleshelper
EADCFACJ     lemma:equalanglessymmetric

EQAA           cn:equalityreflexive
RACAA          lemma:ray4
COJCA          assumption
 COJAC         lemma:collinearorder
 COAJB         defn:collinear
 COJAB        lemma:collinearorder
 NEAJ          lemma:betweennotequal
 NEJA          lemma:inequalitysymmetric
 COACB         lemma:collinear4
 COABC         lemma:collinearorder
NCJCA          reductio 
EAJCAJCA     lemma:equalanglesreflexive 
EAJCADCA      lemma:equalangleshelper
EADCAJCA      lemma:equalanglessymmetric
EAJCAACJ      lemma:ABCequalsCBA
EADCAACJ      lemma:equalanglestransitive 
NCACD  
EAACDDCA     lemma:ABCequalsCBA
EAACDJCA       lemma:equalanglestransitive
NCDCA          lemma:NCorder
EADCAACD      lemma:ABCequalsCBA 
EAJCAACD     lemma:equalanglestransitive
RRDGC          lemma:8.2
COCGA          lemma:collinearorder
BEAJB
NCACB         lemma:NCorder
RRCGD
EAACJJCB
AOACJCGD       lemma:halfanglelessthanright 
AODCACGD      lemma:angleorderrespectscongruence2
NCACJ           lemma:NCorder
RACGA          lemma:acutebetween
RACAG          lemma:ray5
RACJD         lemma:ray4
EADCFGCD      lemma:equalangleshelper
NCDGC         lemma:rightangleNC
NCGCD         lemma:NCorder
EAGCDDCG      lemma:ABCequalsCBA
EADCFDCG      lemma:equalanglestransitive
EACFDCGD      lemma:equalanglessymmetric
NCCFD         lemma:equalanglesNC
NCDCF         lemma:NCorder   
TRDCF         defn:triangle
EADCGDCF      lemma:equalanglessymmetric
NCDCG         lemma:equalanglesNC
TRDCG         defn:triangle
EEDCDC        cn:congruencereflexive
EEDFDG        proposition:26B
EECFCG        proposition:26B
EEDGDF        lemma:congruencesymmetric
EEDGDE        lemma:congruencetransitive


EQDD          cn:equalityreflexive
COADD         defn:collinear
NCADB         lemma:NCorder
OSBADH        defn:oppositeside
OSHADB        lemma:oppositesidesymmetric
EQAA          cn:equalityreflexive
COADA         defn:collinear
RAACH         lemma:ray4
OSCADB        lemma:9.5 
EEDADA        cn:congruencereflexive
EQEA          assumption
% Euclid fails to consider this possibility at all
 EEDADE       cn:equalitysub
 RRCGD        lemma:8.2
 COCGA        lemma:collinearorder
 EQAG         assumption
  EQGA        lemma:equalitysymmetric
  RRCAD       cn:equalitysub
  RRDAC       lemma:8.2
  RRBAD       cn:equalitysub
  OSBADC      lemma:oppositesidesymmetric
  BEBAC       lemma:rightcollinear
  COBAC       defn:collinear
  COABC       lemma:collinearorder
 NEAG         reductio
 EEDGDA       cn:equalitysub
 RRSGD
 COASC      lemma:collinearorder
 NEGA       lemma:inequalitysymmetric
 RRAGD      lemma:collinearright
 LTGDAD     lemma:legsmallerhypotenuse
 EEDEDG     lemma:congruencesymmetric
 EEDADG     cn:equalitysub
 EEADGD     lemma:congruenceflip
 LTGDGD     lemma:lessthancongruence
 NOLTGDGD   lemma:trichotomy2
NEEA        reductio 
NEAE       lemma:inequalitysymmetric
  
EQGA        assumption
 EEDADG     cn:equalitysub
 RRBED      lemma:8.2
 COBEA      lemma:collinearorder
 NEAE       lemma:inequalitysymmetric
 EEDADE     cn:equalitysub
 EEDEDA     lemma:congruencesymmetric
 RRQED 
 COAQB      lemma:collinearorder
 RRAED      lemma:collinearright
 LTEDAD     lemma:legsmallerhypotenuse
 EEDGDE     
 EEADED     lemma:congruenceflip
 LTEDED     lemma:lessthancongruence
 NOLTEDED   lemma:trichotomy2
NEGA        reductio
NEAG        lemma:inequalitysymmetric

RRDGC
RRDEB
RRCGD      lemma:8.2
RRBED      lemma:8.2
COBEA      lemma:collinearorder
RRAED      lemma:collinearright
COCGA      lemma:collinearorder
RRAGD      lemma:collinearright
EAAEDAGD  lemma:Euclid4
COAED      assumption
 COEAD     lemma:collinearorder
 COEAB     lemma:collinearorder
 COADB     lemma:collinear4
 NCADB
NCAED      reductio
COAGD     assumption
 COGAC    lemma:collinearorder
 COGAD    lemma:collinearorder
 COACD    lemma:collinear4
 NCACD
NCAGD     reductio
TRAED      defn:triangle
TRAGD      defn:triangle
RRAED
RRAGD
EEADAD     cn:congruencereflexive
EEGDED    lemma:congruenceflip
EEEDGD    lemma:congruencesymmetric
EADAEDAG   lemma:rightangleSSA
NCDAG      lemma:NCorder
EADAGGAD   lemma:ABCequalsCBA
EADAEGAD   lemma:equalanglestransitive
EAGADDAE  lemma:equalanglessymmetric 

BECDJ
BEAJB
NCABC
ANBECKB+BEADK  postulate:Pasch-outer
BECKB
BEADK

NOBEAEB    assumption
 NOBEAGC   assumption
  RABAE
  ORBEBAE|EQEA|BEBEA    lemma:ray1
  BEBEA assumption
   BEAEB  axiom:betweennesssymmetry
  NOBEBEA reductio
  NEEA
  cases BEBAE:BEBAE|EQEA|BEBEA
   case 1:BEBAE
   qedcase
   case 2:EQEA
   NOBEBAE assumption
    NEEA
   BEBAE reductio
   qedcase
   case 3:BEBEA 
    NOBEBAE assumption
     BEAEB axiom:betweennesssymmetry
    BEBAE reductio
   qedcase
  BEBAE cases
  EEBABA   cn:congruencereflexive
  LTBABE   defn:lessthan
  EEBEBF   lemma:congruencesymmetric
  LTBABF   lemma:lessthancongruence
  RACAG
  ORBECAG|EQGA|BECGA  lemma:ray1
  BECGA   assumption
   BEAGC  axiom:betweennesssymmetry
  NOBECGA  reductio
  NEGA
  cases BECAG:BECAG|EQGA|BECGA
   case 1:BECAG
   qedcase
   case 2:EQGA
    NOBECAG  assumption
     NEGA
    BECAG reductio
    qedcase
   case 3:BECGA
    NOBECAG assumption
     BEAGC axiom:betweennesssymmetry
    BECAG reductio
   qedcase
  BECAG cases
  EECACA  cn:congruencereflexive
  LTCACG  defn:lessthan
  EECGCF  lemma:congruencesymmetric
  LTCACF  lemma:lessthancongruence
  EECFFC  cn:equalityreverse
  LTCAFC  lemma:lessthancongruence 
  EECAAC  cn:equalityreverse
  LTACFC  lemma:lessthancongruence2
  NCBAC   lemma:NCorder
  TRBAC   defn:triangle
  TGBAACBC  proposition:20
  ANBEBAL+EEALAC+LTBCBL defn:togethergreater
  BEBAL
  EEALAC
  LTBCBL
  EEACAL  lemma:congruencesymmetric
  LTALFC  lemma:lessthancongruence2
  LTBABF 
  BEBAL
  RABCF
  RACBF  
  BEBFC    lemma:tworays
  LTBLBC   lemma:lessthanadditive2
  LTBLBL   lemma:lessthantransitive
  NOLTBLBL  lemma:trichotomy2
 BEAGC    reductio
 BEBJA
 COABE
 OREQAB|EQAE|EQBE|BEBAE|BEABE|BEAEB  defn:collinear
 NEBE
 NOBEAEB
 NEEA
 NEAB     lemma:betweennotequal
 BEABE  assumption
  RAABE  lemma:ray4
  RABAE
  BEAEB  lemma:tworays
  BEBEB   lemma:3.6a
  NOBEBEB axiom:betweennessidentity
 NOBEABE  reductio
 cases BEBAE:EQAB|EQAE|EQBE|BEBAE|BEABE|BEAEB
  case 1:EQAB
   NOBEBAE assumption
    NEAB
   BEBAE reductio  
  qedcase 
  case 2:EQAE
   NOBEBAE assumption
    NEAE
   BEBAE reductio
  qedcase
  case 3:EQBE
   NOBEBAE assumption
    NEBE
   BEBAE reductio 
  qedcase
  case 4:BEBAE
  qedcase
  case 5:BEABE
   NOBEBAE assumption
    NOBEABE
   BEBAE reductio
  qedcase
  case 6:BEAEB
   NOBEBAE assumption
    NOBEAEB
   BEBAE reductio 
  qedcase
 BEBAE cases 
 BEJAE    lemma:3.6a
 BEEAJ    axiom:betweennesssymmetry
 BECDJ 
 COCJE   assumption
  COJAE   defn:collinear
  COEJA   lemma:collinearorder
  COEJC   lemma:collinearorder
  NEJE   lemma:betweennotequal
  NEEJ   lemma:inequalitysymmetric
  COJAC   lemma:collinear4
  COCDJ   defn:collinear
  COJCD   lemma:collinearorder
  COJCA   lemma:collinearorder
  NECJ    lemma:betweennotequal
  NEJC    lemma:inequalitysymmetric
  COCDA   lemma:collinear4
  COACD   lemma:collinearorder
  NCACD
 NCCJE   reductio
 ANBECMA+BEEMD  postulate:Pasch-inner
 BECMA
 BEEMD
 EQDD     cn:equalityreflexive
 NEAD    lemma:NCdistinct
 RAADD    lemma:ray4
 EQEE     cn:equalityreflexive
 RAAEE     lemma:ray4
 NCDAC     lemma:NCorder
 BEDME      axiom:betweennesssymmetry
 EADACDAC   lemma:equalanglesreflexive
 EQCC       cn:equalityreflexive
 RAACC      lemma:ray4
 BEAMC      axiom:betweennesssymmetry
 RAACM      lemma:ray4
 EADACDAM   lemma:equalangleshelper
 AODACDAE    defn:anglelessthan
 EAGADDAE
 COGAD     assumption
  COAGC    defn:collinear
  COGAC    lemma:collinearorder
  COACD     lemma:collinear4
 NCGAD     reductio
 EAGADGAD  lemma:equalanglesreflexive
 RAAGC     lemma:ray4
 RAADD      lemma:ray4
 EAGADCAD  lemma:equalangleshelper
 NCCAD     lemma:NCorder
 EACADDAC  lemma:ABCequalsCBA
 EAGADDAC  lemma:equalanglestransitive
 EADACGAD  lemma:equalanglessymmetric
 EADACDAE  lemma:equalanglestransitive
 EADAEDAC   lemma:equalanglessymmetric
 AODAEDAE   lemma:angleorderrespectscongruence2
 NOAODAEDAE  lemma:angletrichotomy
BEAEB    reductio
RAAEB    lemma:ray4
EQDD      cn:equalityreflexive
NEAD      lemma:NCdistinct
RAADD    lemma:ray4
RAAEB     lemma:ray4
COEAD    assumption
 COEAB    lemma:collinearorder
 COABD    lemma:collinear4
NCEAD     reductio
EAEADEAD  lemma:equalanglesreflexive
EAEADBAD  lemma:equalangleshelper
NEAG     

% Now we have to prove BEAGC 
% by switching (B,J,E) to (C,H,G) in the 
% above argument

COACG
OREQAC|EQAG|EQCG|BECAG|BEACG|BEAGC  defn:collinear
NECG
NOBEAGC   assumption
 NEGA
 NEAC     lemma:betweennotequal
 BEACG  assumption
  RAACG  lemma:ray4
  RACAG
  BEAGC  lemma:tworays
  BECGC   lemma:3.6a
  NOBECGC axiom:betweennessidentity
 NOBEACG  reductio
 cases BECAG:EQAC|EQAG|EQCG|BECAG|BEACG|BEAGC
  case 1:EQAC
   NOBECAG assumption
    NEAC
   BECAG reductio  
  qedcase 
  case 2:EQAG
   NOBECAG assumption
    NEAG
   BECAG reductio
  qedcase
  case 3:EQCG
   NOBECAG assumption
    NECG
   BECAG reductio 
  qedcase
  case 4:BECAG
  qedcase
  case 5:BEACG
   NOBECAG assumption
    NOBEACG
   BECAG reductio
  qedcase
  case 6:BEAGC
   NOBECAG assumption
    NOBEAGC
   BECAG reductio 
  qedcase
 BECAG cases 
 BEHAG    lemma:3.6a
 BEGAH    axiom:betweennesssymmetry
 BEBDH 
 COBHG   assumption
  COHAG   defn:collinear
  COGHA   lemma:collinearorder
  COGHB   lemma:collinearorder
  NEHG   lemma:betweennotequal
  NEGH   lemma:inequalitysymmetric
  COHAB   lemma:collinear4
  COBDH   defn:collinear
  COHBD   lemma:collinearorder
  COHBA   lemma:collinearorder
  NEBH    lemma:betweennotequal
  NEHB    lemma:inequalitysymmetric
  COBDA   lemma:collinear4
  COABD   lemma:collinearorder
  NCABD
 NCBHG   reductio
 ANBEBMA+BEGMD  postulate:Pasch-inner
 BEBMA
 BEGMD
 EQDD     cn:equalityreflexive
 NEAD    lemma:NCdistinct
 RAADD    lemma:ray4
 EQGG     cn:equalityreflexive
 RAAGG     lemma:ray4
 NCDAB     lemma:NCorder
 BEDMG      axiom:betweennesssymmetry
 EADABDAB   lemma:equalanglesreflexive
 EQBB       cn:equalityreflexive
 RAABB      lemma:ray4
 BEAMB      axiom:betweennesssymmetry
 RAABM      lemma:ray4
 EADABDAM   lemma:equalangleshelper
 AODABDAG    defn:anglelessthan
 EAGADDAE   
 EADAGEAD   lemma:equalanglesflip
 EAEADDAG    lemma:equalanglessymmetric
 COEAD     assumption
  COAEB    defn:collinear
  COEAB    lemma:collinearorder
  COABD     lemma:collinear4
 NCEAD     reductio
 COHAD    assumption
  COAHC   defn:collinear
  COHAC    lemma:collinearorder
  NEAH     lemma:betweennotequal
  NEHA     lemma:inequalitysymmetric
  COACD    lemma:collinear4
 NCHAD     reductio 
 EAEADEAD  lemma:equalanglesreflexive
 NEAJ       lemma:betweennotequal
 RAAEB     lemma:ray4
 RAADD      lemma:ray4
 EAEADBAD  lemma:equalangleshelper
 NCBAD     lemma:NCorder
 EABADDAB  lemma:ABCequalsCBA
 EAEADDAB  lemma:equalanglestransitive
 EADABEAD  lemma:equalanglessymmetric 
 EADABDAG  lemma:equalanglestransitive
 EADAGDAB   lemma:equalanglessymmetric
 AODAGDAG   lemma:angleorderrespectscongruence2
 NOAODAGDAG  lemma:angletrichotomy
BEAGC    reductio
RAAGC    lemma:ray4
RAACG    lemma:ray5
NCDAC    lemma:NCorder
EADACDAC   lemma:equalanglesreflexive
EADACDAG  lemma:equalangleshelper
EAGADDAE
EADAGEAD  lemma:equalanglesflip
EAEADDAG  lemma:equalanglessymmetric
EABADEAD   lemma:equalanglessymmetric
EABADDAG   lemma:equalanglestransitive
EADAGDAC   lemma:equalanglessymmetric
EABADDAC   lemma:equalanglestransitive
BEBKC    axiom:betweennesssymmetry
ANBECDJ+BEBDH+EABADDAC+BEADK+BEBKC

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists