Sindbad~EG File Manager
TRABC
RRBAC
SQABFG
OSGBAC
SQBCED
OSDCBA
ANPGBMLD+BEBMC+PGMCEL+BEDLE+BELMA+RRDLA proposition:47A
PGBMLD
BEBMC
PGMCEL
BEDLE
BELMA
RRDLA
ANBEDNA+COCBN+NCCBD defn:oppositeside
RRGAB defn:square
BEGAC lemma:righttogether
RRABF defn:square
RRFBA lemma:8.2
RRDBC defn:square
NCABC defn:triangle
PGABFG lemma:squareparallelogram
PRABFG defn:parallelogram
PRABGF lemma:parallelflip
TPABGF lemma:paralleldef2B
SSGFAB defn:tarski_parallel
SSFGAB lemma:samesidesymmetric
OSGABC lemma:oppositesideflip
OSFABC lemma:planeseparation
ANBEFaC+COABa+NCABF defn:oppositeside
BEFaC
COABa
COBAa lemma:collinearorder
PRAGBF defn:parallelogram
PRAGFB lemma:parallelflip
COGAC defn:collinear
COAGC lemma:collinearorder
NEGC lemma:betweennotequal
NECG lemma:inequalitysymmetric
PRFBAG lemma:parallelsymmetric
PRFBCG lemma:collinearparallel
PRFBGC lemma:parallelflip
NOMEFBGC defn:parallel
NEAC lemma:NCdistinct
NCABF lemma:parallelNC
NEFA lemma:NCdistinct
NEFB lemma:NCdistinct
EQBB cn:equalityreflexive
COFBB defn:collinear
ANCOFBB+COGAC+NEFB+NEGC+NEFA+NEAC+NOMEFBGC+BEFaC+COBAa
BEBaA lemma:collinearbetween
NEBa lemma:betweennotequal
RABaA lemma:ray4
NEBF lemma:inequalitysymmetric
EQFF cn:equalityreflexive
RABFF lemma:ray4
NCABF lemma:parallelNC
NCFBA lemma:NCorder
EAFBAFBA lemma:equalanglesreflexive
RABAa lemma:ray5
EAFBAFBa lemma:equalangleshelper
NEBC lemma:NCdistinct
EQCC cn:equalityreflexive
RABCC lemma:ray4
EAABCABC lemma:equalanglesreflexive
EAABCaBC lemma:equalangleshelper
ASFBAABCFBC defn:anglesum
OSDCBA
ANBEDcA+COCBc+NCCBD defn:oppositeside
BEDcA
COCBc
NCCBD
SQBCED
PGBCED lemma:squareparallelogram
PRBDCE defn:parallelogram
PRCEBD lemma:parallelsymmetric
PRCEDB lemma:parallelflip
COBCc lemma:collinearorder
COBMC defn:collinear
COCBM lemma:collinearorder
COCBc lemma:collinearorder
NECB lemma:NCdistinct
COBMc lemma:collinear4
PGBMLD
PRBDML defn:parallelogram
COLMA defn:collinear
COMLA lemma:collinearorder
NELA lemma:betweennotequal
NEAL lemma:inequalitysymmetric
PRBDAL lemma:collinearparallel
EQBB cn:equalityreflexive
PRDBLA lemma:parallelflip
NOMEDBLA defn:parallel
NCBDL lemma:parallelNC
NEDB lemma:NCdistinct
NEMA lemma:betweennotequal
NELM lemma:betweennotequal
EQDD cn:equalityreflexive
CODBB defn:collinear
ANCODBB+COLMA+NEDB+NELM+NEDB+NEMA+NOMEDBLA+BEDcA+COBMc
BEBcM lemma:collinearbetween
BEBcC lemma:3.6b
NCDBA lemma:parallelNC
EQBc assumption
CODBc defn:collinear
CODcA defn:collinear
COcDB lemma:collinearorder
COcDA lemma:collinearorder
NEDc lemma:betweennotequal
NEcD lemma:inequalitysymmetric
CODBA lemma:collinear4
NEBc reductio
RABcC lemma:ray4
RABCc lemma:ray5
NCCBA lemma:NCorder
EACBACBA lemma:equalanglesreflexive
EQAA cn:equalityreflexive
NEBA lemma:NCdistinct
RABAA lemma:ray4
EACBAcBA lemma:equalangleshelper
NCCDB lemma:parallelNC
NCDBC lemma:NCorder
EADBCDBC lemma:equalanglesreflexive
NEBD lemma:inequalitysymmetric
RABDD lemma:ray4
EADBCDBc lemma:equalangleshelper
ASDBCCBADBA defn:anglesum
ASFBAABCFBC
ASDBCCBADBA
EAFBADBC lemma:Euclid4
EAABCCBA lemma:ABCequalsCBA
EAFBCDBA lemma:angleaddition
EADBAFBC lemma:equalanglessymmetric
COCBF assumption
RRFBA
COFBC lemma:collinearorder
RRCBA lemma:collinearright
NORRCBA lemma:8.7
NCCBF reductio
NCFBC lemma:NCorder
EAFBCCBF lemma:ABCequalsCBA
EADBACBF lemma:equalanglestransitive
EEABBF defn:square
EEABFB lemma:congruenceflip
EEFBAB lemma:congruencesymmetric
EEBFBA lemma:congruenceflip
EEBABF lemma:congruencesymmetric
EEBCDB defn:square
EEDBBC lemma:congruencesymmetric
EEBDBC lemma:congruenceflip
ANEEDACF+EABDABCF+EABADBFC proposition:04
EEDACF
EEADFC lemma:congruenceflip
EABADBFC
EABFCBAD lemma:equalanglessymmetric
NCBAD lemma:equalanglesNC
NCABD lemma:NCorder
TRABD defn:triangle
ANEEABFB+EEADFC+EEBDBC+TRABD
TCABDFBC defn:trianglecongruence
ETABDFBC axiom:congruentequal
PGBMLD
PRBMLD defn:parallelogram
PRBDML defn:parallelogram
PRMLBD lemma:parallelsymmetric
PRMBDL lemma:parallelflip
PGMBDL defn:parallelogram
COMLA lemma:collinearorder
ETMBDABD proposition:41
PGABFG lemma:squareparallelogram
PGBAGF lemma:PGflip
COGAC defn:collinear
COAGC lemma:collinearorder
ETABFCBF proposition:41
ETABFFBC axiom:ETpermutation
ETFBCABD axiom:ETsymmetric
ETABFABD axiom:ETtransitive
ETABDMBD axiom:ETsymmetric
ETABFMBD axiom:ETtransitive
TCABFFGA proposition:34
ETABFFGA axiom:congruentequal
PGBMLD lemma:PGflip
TCMBDDLM proposition:34
ETMBDDLM axiom:congruentequal
ETFGAABF axiom:ETsymmetric
ETFGAABD axiom:ETtransitive
ETFGAMBD axiom:ETtransitive
ETFGADLM axiom:ETtransitive
ETFGADML axiom:ETpermutation
ETDMLFGA axiom:ETsymmetric
ETDMLFAG axiom:ETpermutation
ETFAGDML axiom:ETsymmetric
ETABFDMB axiom:ETpermutation
ETDMBABF axiom:ETsymmetric
ETDMBFAB axiom:ETpermutation
ETFABDMB axiom:ETsymmetric
ANMIAmF+MIBmG lemma:diagonalsbisect
MIAmF
MIBmG
BEAmF defn:midpoint
BEBmG defn:midpoint
BEFmA axiom:betweennesssymmetry
ANMIBnL+MIMnD lemma:diagonalsbisect
MIBnL
MIMnD
BEBnL defn:midpoint
BEMnD defn:midpoint
BEDnM axiom:betweennesssymmetry
COMnD defn:collinear
CODMn lemma:collinearorder
NCBMD lemma:parallelNC
NCDMB lemma:NCorder
EFFBAGDBML axiom:paste3
EFFBAGBMLD axiom:EFpermutation
EFBMLDFBAG axiom:EFsymmetric
EFBMLDABFG axiom:EFpermutation
EFABFGBMLD axiom:EFsymmetric
ANPGBMLD+BEBMC+PGMCEL+BEDLE+BELMA+RRDLA+EFABFGBMLD
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists