Sindbad~EG File Manager
NCJEN
NCABD
NCCBD
BEAOC
BEBOD
NERK
NCKRS
NEBD lemma:NCdistinct
ANBEBmD+EEmBmD proposition:10
BEBmD
EEmBmD
EEBmmD lemma:congruenceflip
MIBmD defn:midpoint
NEBm lemma:betweennotequal
ANBERKP+EEKPBm lemma:extension
BERKP
EEKPBm
% set up for 42B
TRABD defn:triangle
MIBmD
NCJEN
NEKP lemma:betweennotequal
NEPK lemma:inequalitysymmetric
ANBEPKH+EEKHPK lemma:extension
BEPKH
EEKHPK
EEPKKH lemma:congruencesymmetric
MIPKH defn:midpoint
% KH = PK = Bm = mD
EEPKBm lemma:congruenceflip
EEKHBm lemma:congruencetransitive
EEBmmD lemma:congruenceflip
EEKHmD lemma:congruencetransitive
BEPKR axiom:betweennesssymmetry
COPKH defn:collinear
COPKR defn:collinear
NEPK lemma:betweennotequal
COKHR lemma:collinear4
CORKH lemma:collinearorder
NCRKS lemma:NCorder
EQKK cn:equalityreflexive
CORKK defn:collinear
NEKH lemma:betweennotequal
NEHK lemma:inequalitysymmetric
NCHKS lemma:NChelper
NCSKH lemma:NCorder
ANPGFKHG+EFABmDFKHG+EAHKFJEN+SSSFKH proposition:42B
PGFKHG
%Now set up to apply 44
NCDBC lemma:NCorder
TRDBC defn:triangle
PRFKHG defn:parallelogram
NCKHG lemma:parallelNC
NCHGK lemma:NCorder
NCGHK lemma:NCorder
ANPGGHML+EAGHMJEN+EFDBeCGHML+MIBeC+OSMGHK proposition:44
EAGHMJEN
MIBeC
BEBeC defn:midpoint
PGFKHG
PGGHML
EAHKFJEN
EAJENGHM lemma:equalanglessymmetric
EAHKFGHM lemma:equalanglestransitive
PRFKHG defn:parallelogram
PRKFHG lemma:parallelflip
NEHK lemma:NCdistinct
ANBEHKs+EEKsHK lemma:extension
PRFGKH defn:parallelogram
PRKHFG lemma:parallelsymmetric
TPKHFG lemma:paralleldef2B
SSFGKH defn:tarski_parallel
RTFKHKHG proposition:29C
EAGHMHKF lemma:equalanglessymmetric
NCHKF lemma:equalanglesNC
NCFKH lemma:NCorder
EAFKHHKF lemma:ABCequalsCBA
EAFKHGHM lemma:equalanglestransitive
RTGHMKHG lemma:RTcongruence
RTKHGGHM lemma:RTsymmetric
%Next to show BEKHM
OSMGHK
EQGG cn:equalityreflexive
NEHG lemma:NCdistinct
RAHGG lemma:ray4
RTKHGGHM
BEKHM proposition:14
%next to show PRFKLM using I.30
NEFK lemma:NCdistinct
NCGHM lemma:equalanglesNC
NEGH lemma:NCdistinct
PRGHML defn:parallelogram
NCHML lemma:parallelNC
NELM lemma:NCdistinct
EQKK cn:equalityreflexive
EQHH cn:equalityreflexive
EQMM cn:equalityreflexive
COFKK defn:collinear
COGHH defn:collinear
COLMM defn:collinear
BEKHM
PRFKGH lemma:parallelflip
PRMLGH lemma:parallelsymmetric
PRLMGH lemma:parallelflip
PRFKLM proposition:30
PRFKML lemma:parallelflip
% Next show FG and LF both parallel KM and apply Playfair
% Euclid essentially gives a proof of Playfair here instead
PGFKHG
PGGHML
PRFGKH defn:parallelogram
PRGLHM defn:parallelogram
PRFGHK lemma:parallelflip
COKHM defn:collinear
COHKM lemma:collinearorder
NEKM lemma:betweennotequal
NEMK lemma:inequalitysymmetric
PRFGMK lemma:collinearparallel
COHMK lemma:collinearorder
PRGLKM lemma:collinearparallel
PRGLMK lemma:parallelflip
PRMKGL lemma:parallelsymmetric
PRMKFG lemma:parallelsymmetric
PRMKGF lemma:parallelflip
COGLF lemma:Playfair
COGFL lemma:collinearorder
NCFLM lemma:parallelNC
NELF lemma:NCdistinct
PRMKLF lemma:collinearparallel
PRLFMK lemma:parallelsymmetric
PRFLKM lemma:parallelflip
PGFKML defn:parallelogram
EAHKFJEN
NCFKH lemma:parallelNC
EAFKHHKF lemma:ABCequalsCBA
EAFKHJEN lemma:equalanglestransitive
NEKH lemma:betweennotequal
RAKHM lemma:ray4
RAKMH lemma:ray5
EQFF cn:equalityreflexive
NEKF lemma:NCdistinct
RAKFF lemma:ray4
NCFKM lemma:parallelNC
EAFKMFKM lemma:equalanglesreflexive
EAFKMFKH lemma:equalangleshelper
EAFKMJEN lemma:equalanglestransitive
EFABmDFKHG
EFDBeCGHML
COBOD defn:collinear
COBDO lemma:collinearorder
NCBDA lemma:NCorder
OSABDC defn:oppositeside
BEKHM
% Next prove BEFGL
PRGHLM lemma:parallelflip
TPGHLM lemma:paralleldef2B
SSLMGH defn:tarski_parallel
PRFKGH lemma:parallelflip
PRGHFK lemma:parallelsymmetric
TPGHFK lemma:paralleldef2B
SSFKGH defn:tarski_parallel
EQHH cn:equalityreflexive
COGHH defn:collinear
OSKGHM defn:oppositeside
OSFGHM lemma:planeseparation
OSMGHF lemma:oppositesidesymmetric
OSLGHF lemma:planeseparation
ANBELtF+COGHt+NCGHL defn:oppositeside
BELtF
COGHt
COFLG lemma:collinearorder
COLtF defn:collinear
COFLt lemma:collinearorder
NEFL lemma:NCdistinct
COLGt lemma:collinear4
COtGL lemma:collinearorder
COtGH lemma:collinearorder
NEtG assumption
COGLH lemma:collinear4
COGHL lemma:collinearorder
NCGHL
EQtG reductio
BELGF cn:equalitysub
BEFGL axiom:betweennesssymmetry
PGFKML
ANBEFjM+BEKjL lemma:diagonalsmeet
BEFjM
BEKjL
EFABCDFKML axiom:paste4
EFFKMLABCD axiom:EFsymmetric
BEPKH
BEKHM
BEPKR
BEPKM lemma:3.7b
ANBEPKM+BEPKR
RAKRM defn:ray
SSSFKH
SSFSKH lemma:samesidesymmetric
COKHM defn:collinear
SSFSKM lemma:samesidecollinear
ANPGFKML+EAFKMJEN+EFFKMLABCD+RAKRM+SSFSKM
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists