Sindbad~EG File Manager
PGBEFG
EAEBGJDN
BEABE
PGEFGB lemma:PGrotate
PGFGBE lemma:PGrotate
PGGBEF lemma:PGrotate
PRGFBE defn:parallelogram
NCGBE lemma:parallelNC
NEGB lemma:NCdistinct
ANBEGBq+EEBqGB lemma:extension
BEGBq
EEBqGB
NCEBG lemma:NCorder
COABE defn:collinear
COEBA lemma:collinearorder
EQBB cn:equalityreflexive
COEBB defn:collinear
NEAB lemma:betweennotequal
NCABG lemma:NChelper
COGBq defn:collinear
NCGBA lemma:NCorder
NEGq lemma:betweennotequal
NEqG lemma:inequalitysymmetric
EQGG cn:equalityreflexive
COGBG defn:collinear
NCqGA lemma:NChelper
NCGqA lemma:NCorder
ANBEHAh+EAhABABG+EAhABGBA+EABAhGBA+EAHABABq+EAHABqBA+EABAHqBA+PRHhGq+EEHABq+EEAhGB+EEATTB+EEHTTq+EEGTTh+BEHTq+BEGTh+BEATB proposition:31
BEHAh
PRHhGq
BEHTq
BEATB
EEHABq
PRHhqG lemma:parallelflip
COGBq defn:collinear
COqGB lemma:collinearorder
NEBG lemma:NCdistinct
PRHhBG lemma:collinearparallel
PRHhGB lemma:parallelflip
PRGBHh lemma:parallelsymmetric
PRGBhH lemma:parallelflip
COHAh defn:collinear
COhHA lemma:collinearorder
NEHA lemma:betweennotequal
NEAH lemma:inequalitysymmetric
PRGBAH lemma:collinearparallel
PRGBHA lemma:parallelflip
PRHAGB lemma:parallelsymmetric
EEHAGB lemma:congruencetransitive
EQBB cn:equalityreflexive
COABB defn:collinear
COATB defn:collinear
COABT lemma:collinearorder
NCBHA lemma:parallelNC
NCABH lemma:NCorder
NCHAB lemma:parallelNC
NCABH lemma:NCorder
ANCOABT+COABB+BEHTq+BEGBq+NCABH+NCABG
SSHGAB defn:sameside
ANPRHGAB+EEHGAB proposition:33B
PRHGAB
PRABHG lemma:parallelsymmetric
PRABGH lemma:parallelflip
PGGBEF
ANPRGBEF+PRGFBE defn:parallelogram
PRGBEF
PRGFBE
PRGFEB lemma:parallelflip
COABE defn:collinear
COEBA lemma:collinearorder
PRGFAB lemma:collinearparallel
PRABGF lemma:parallelsymmetric
COGHF lemma:Playfair
PRHABG lemma:parallelflip
PRGBFE lemma:parallelflip
PRFEGB lemma:parallelsymmetric
PGHABG defn:parallelogram
ANBEHjB+BEAjG lemma:diagonalsmeet
BEHjB
BEAjG
PGGBEF
ANBEGkE+BEBkF lemma:diagonalsmeet
BEGkE
BEBkF
PRHAGB
PRFEGB
BEEBA axiom:betweennesssymmetry
EQEE cn:equalityreflexive
EQBB cn:equalityreflexive
EQAA cn:equalityreflexive
COFEE defn:collinear
COGBB defn:collinear
COHAA defn:collinear
NCFEB lemma:parallelNC
NEFE lemma:NCdistinct
NEGB lemma:NCdistinct
NCHAG lemma:parallelNC
NEHA lemma:NCdistinct
PRHAFE proposition:30
EEHAGB
EEGBFE proposition:34
EEHAFE lemma:congruencetransitive
PGHABG
PGGBEF
PRGFBE defn:parallelogram
PRHGAB defn:parallelogram
PRBEGF lemma:parallelsymmetric
PRABHG lemma:parallelsymmetric
TPBEGF lemma:paralleldef2B
TPABHG lemma:paralleldef2B
SSGFBE defn:tarski_parallel
SSHGAB defn:tarski_parallel
COABE defn:collinear
NEAE lemma:betweennotequal
SSHGAE lemma:samesidecollinear
SSGFEB lemma:samesideflip
COEBA lemma:collinearorder
NEEA lemma:inequalitysymmetric
SSGFEA lemma:samesidecollinear
SSGFAE lemma:samesideflip
SSHFAE lemma:samesidetransitive
ANPRHAFE+EEHAFE+SSHFAE
PRHFAE proposition:33B
PRHAEF lemma:parallelflip
PGHAEF defn:parallelogram
NCHFE lemma:parallelNC
NCEFH lemma:NCorder
ANMIHtE+MIAtF lemma:diagonalsbisect
MIHtE
MIAtF
ANBEHtE+EEHttE defn:midpoint
EEHttE
ANBEAtF+EEAttF defn:midpoint
EEAttF
EEAtFt lemma:congruenceflip
BEAtF
BEHtE
BEABE
EEHtEt lemma:congruenceflip
EEtAtF lemma:congruenceflip
NCHEF lemma:NCorder
ANBEHBK+BEFEK postulate:Euclid5
BEFEK
COFEK defn:collinear
COEFK lemma:collinearorder
NEFK lemma:betweennotequal
NEKF lemma:inequalitysymmetric
PRHAKF lemma:collinearparallel
PRHAFK lemma:parallelflip
PRFKHA lemma:parallelsymmetric
PRFKAH lemma:parallelflip
EQHH cn:equalityreflexive
COAHH defn:collinear
ANPGHLKF+COAHL lemma:triangletoparallelogram
PGHLKF
COAHL
PRHLKF defn:parallelogram
NCLKF lemma:parallelNC
NELK lemma:NCdistinct
NEKL lemma:inequalitysymmetric
PGGBEF
PRGBEF defn:parallelogram
PRGBFE lemma:parallelflip
COFEE defn:collinear
COFEK defn:collinear
NEEK lemma:betweennotequal
PRGBEK lemma:collinearparallel2
PREKGB lemma:parallelsymmetric
COGBB defn:collinear
ANPGBMKE+COGBM lemma:triangletoparallelogram
%Now set up to apply 43
PGHLKF
PGLKFH lemma:PGrotate
PGKLHF lemma:PGflip
PGLHFK lemma:PGrotate
PGHFKL lemma:PGrotate
BEFEK
BEABE
PGHABG
PGAHGB lemma:PGflip
PRAHGB defn:parallelogram
EQKK cn:equalityreflexive
EQEE cn:equalityreflexive
EQFF cn:equalityreflexive
BEHBK
PGBMKE
PRBEMK defn:parallelogram
PRMKBE lemma:parallelsymmetric
PRKMEB lemma:parallelflip
PGGBEF
PRGFBE defn:parallelogram
NCEMK lemma:parallelNC
NCBEK lemma:parallelNC
NCGFB lemma:parallelNC
PRMKBE lemma:parallelflip
PRGFBE lemma:parallelflip
BEKEF axiom:betweennesssymmetry
COMKK defn:collinear
COBEE defn:collinear
COGFF defn:collinear
NEMK lemma:NCdistinct
NEBE lemma:NCdistinct
NEGF lemma:NCdistinct
PRMKGF proposition:30
PRKMFG lemma:parallelflip
PRFGKM lemma:parallelsymmetric
PGHLKF
PRHFLK defn:parallelogram
PRLKHF lemma:parallelsymmetric
PRKLHF lemma:parallelflip
COHFG lemma:collinearorder
PRKLGF lemma:collinearparallel
PRKLFG lemma:parallelflip
PRFGKL lemma:parallelsymmetric
COKML lemma:Playfair
COMKL lemma:collinearorder
PRBEMK defn:parallelogram
NELK lemma:inequalitysymmetric
PRBELK lemma:collinearparallel
PRLKBE lemma:parallelsymmetric
PRLKEB lemma:parallelflip
COABE defn:collinear
COEBA lemma:collinearorder
PRLKAB lemma:collinearparallel
PRABLK lemma:parallelsymmetric
PRABKL lemma:parallelflip
BEKBH axiom:betweennesssymmetry
COLAH lemma:collinearorder
BELAH lemma:parallelbetween
BEHAL axiom:betweennesssymmetry
PRHAGB lemma:parallelflip
COGBM
NCBMK lemma:parallelNC
NEMB lemma:NCdistinct
PRHAMB lemma:collinearparallel
PRMBHA lemma:parallelsymmetric
PRMBAH lemma:parallelflip
COAHL lemma:collinearorder
PGHLKF
PRHLKF defn:parallelogram
NCHLK lemma:parallelNC
NELH lemma:NCdistinct
PRMBLH lemma:collinearparallel
PRMBHL lemma:parallelflip
COLMK lemma:collinearorder
BELMK lemma:parallelbetween
PGGBEF
PRGBEF defn:parallelogram
COFEK defn:collinear
COEFK lemma:collinearorder
NEFK lemma:betweennotequal
NEKF lemma:inequalitysymmetric
PRGBKF lemma:collinearparallel
COFGH lemma:collinearorder
BEFGH lemma:parallelbetween
BEHGF axiom:betweennesssymmetry
PGHABG
PGABGH lemma:PGrotate
PGBGHA lemma:PGrotate
PGGHAB lemma:PGrotate
PGMKEB lemma:PGrotate
PGKEBM lemma:PGrotate
PGEBMK lemma:PGrotate
EFBEFGLMBA proposition:43
PGHLKF
BEHGF
BEHAL
BELMK
PGAHGB lemma:PGflip
PGMBEK lemma:PGflip
PGABML proposition:43B
EAEBGJDN
BEABE
COHGF lemma:collinearorder
COLMK
NEHF lemma:betweennotequal
NELK lemma:betweennotequal
NEHG lemma:betweennotequal
NEMK lemma:betweennotequal
PRHFLK defn:parallelogram
NOMEHFLK defn:parallel
BEHBK
COGMB lemma:collinearorder
BEGBM lemma:collinearbetween
EAABMGBE proposition:15
EAGBEEBG lemma:ABCequalsCBA
EAABMEBG lemma:equalanglestransitive
EAABMJDN lemma:equalanglestransitive
ANPGABML+EAABMJDN+EFBEFGLMBA+BEGBM
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists