Sindbad~EG File Manager
PGABCD
PGEBCF
BEADF
COAEF
ANPRABCD+PRADBC defn:parallelogram
PRABCD
PRADBC
PRABDC lemma:parallelflip
EEADBC proposition:34
EEEFBC proposition:34
EEBCEF lemma:congruencesymmetric
EEADEF lemma:congruencetransitive
EEEFFE cn:equalityreverse
EEADFE lemma:congruencetransitive
EEADAD cn:congruencereflexive
LTADAF defn:lessthan
LTFEAF lemma:lessthancongruence2
EEAFFA cn:equalityreverse
LTFEFA lemma:lessthancongruence
ANBEFeA+EEFeFE defn:lessthan
BEFeA
EEFeFE
NEFA lemma:betweennotequal
RAFAe lemma:ray4
BEAEF lemma:35helper
BEFEA axiom:betweennesssymmetry
RAFAE lemma:ray4
EQeE lemma:layoffunique
BEFEA cn:equalitysub
BEAEF axiom:betweennesssymmetry
PRDCAB lemma:parallelsymmetric
BEFDA axiom:betweennesssymmetry
TPADBC lemma:paralleldef2B
SSBCAD defn:tarski_parallel
SSCBDA lemma:samesidesymmetric
EAFDCDAB proposition:29C
EQDD cn:equalityreflexive
EQCC cn:equalityreflexive
EQBB cn:equalityreflexive
EQAA cn:equalityreflexive
NCADC lemma:parallelNC
EQAD assumption
COADC defn:collinear
NEAD reductio
NEAD lemma:betweennotequal
NCABC lemma:parallelNC
EQAB assumption
COABC defn:collinear
NEAB reductio
RAABB lemma:ray4
NOORBEADE|BEAED|EQDE assumption
ANNOBEADE+NOBEAED+NEDE
NOBEADE
NOBEAED
NEDE
BEADF
BEAEF
EQDE axiom:connectivity
ORBEADE|BEAED|EQDE reductio
cases RAADE:BEADE|BEAED|EQDE
case 1:BEADE
RAADE lemma:ray4
qedcase
case 2:BEAED
RAADE lemma:ray4
qedcase
case 3:EQDE
NEAD
RAADD lemma:ray4
RAADE cn:equalitysub
qedcase
RAADE cases
NCADB lemma:parallelNC
NCDAB lemma:NCorder
EADABDAB lemma:equalanglesreflexive
EADABEAB lemma:equalangleshelper
EAFDCEAB lemma:equalanglestransitive
EEABDC proposition:34
EEDEED cn:equalityreverse
cases EEAEDF:BEADE|BEAED|EQDE
case 1:BEADE
% the only case Euclid treats
BEDEF lemma:3.6a
BEFED axiom:betweennesssymmetry
EEAEFD cn:sumofparts
EEAEDF lemma:congruenceflip
qedcase
case 2:BEAED
BEDEA axiom:betweennesssymmetry
BEEDF lemma:3.6a
EEADFE
EEDAEF lemma:congruenceflip
EEEADF lemma:differenceofparts
EEAEDF lemma:congruenceflip
qedcase
case 3:EQDE
EEADEF
EEAEEF cn:equalitysub
EEAEDF cn:equalitysub
qedcase
EEAEDF cases
EEDFAE lemma:congruencesymmetric
EEDCAB lemma:congruencesymmetric
ANEEFCEB+EADFCAEB+EADCFABE proposition:04
EEFCEB
EEFDEA lemma:congruenceflip
EADCFABE
EAABEDCF lemma:equalanglessymmetric
NCDCF lemma:equalanglesNC
NCFDC lemma:NCorder
TRFDC defn:triangle
ANEEFDEA+EEDCAB+EEFCEB+TRFDC
TCFDCEAB defn:trianglecongruence
ETFDCEAB axiom:congruentequal
cases EFABCDEBCF:BEADE|BEAED|EQDE
case 1:BEADE
PGABCD
ANBEAMC+BEBMD lemma:diagonalsmeet
BEBMD
BEDMB axiom:betweennesssymmetry
NCADB lemma:parallelNC
COADE defn:collinear
COADA defn:collinear
NEAE lemma:betweennotequal
NCAEB lemma:NChelper
BEBMD axiom:betweennesssymmetry
BEAMC
ANBEBHE+BEAMH postulate:Pasch-outer
BEBHE
BEAMH
COAMH defn:collinear
COAMC defn:collinear
NEAM lemma:betweennotequal
NEMA lemma:inequalitysymmetric
COMAH lemma:collinearorder
COMAC lemma:collinearorder
COAHC lemma:collinear4
BEEHB axiom:betweennesssymmetry
NEEA lemma:inequalitysymmetric
EQBC assumption
COABC defn:collinear
NEBC reductio
NOMEADBC defn:parallel
MEEACB assumption
ANNEEA+NECB+COEAq+COCBq defn:meet
NEEA
NECB
NEBC lemma:inequalitysymmetric
COEAq
COCBq
COBCq lemma:collinearorder
COAEq lemma:collinearorder
COADE defn:collinear
COEAD lemma:collinearorder
COEAq lemma:collinearorder
NEAD lemma:betweennotequal
COADq lemma:collinear4
ANNEAD+NEBC+COADq+COBCq
MEADBC defn:meet
NOMEEACB reductio
BEEHB
COAHC
COACH lemma:collinearorder
COEAA defn:collinear
COCCB defn:collinear
NEEA
NEAE
NEBC
NECB lemma:inequalitysymmetric
BEAHC lemma:collinearbetween
BECHA axiom:betweennesssymmetry
BEEDA axiom:betweennesssymmetry
NCADC lemma:parallelNC
COADE defn:collinear
NCAEC lemma:NChelper
NCCAE lemma:NCorder
ANBECGD+BEEGH postulate:Pasch-inner
BEEGH
BEEHB
BEEGB lemma:3.6b
BEEGH
BEEHB
BEEGB lemma:3.6b
COEGB defn:collinear
CODEG assumption
COGED lemma:collinearorder
COGEB lemma:collinearorder
NEEG lemma:betweennotequal
NEGE lemma:inequalitysymmetric
COEDB lemma:collinear4
COBCB defn:collinear
COEDA lemma:collinearorder
COEDD defn:collinear
NEDE lemma:betweennotequal
NEED lemma:inequalitysymmetric
COADB lemma:collinear5
ANNEAD+NEBC+COADB+COBCB
MEADBC defn:meet
NOMEADBC
NCDEG reductio
TRDEG defn:triangle
ETDEGDEG lemma:ETreflexive
ETDEGEDG axiom:ETpermutation
ETFDCEAB
ETFDCAEB axiom:ETpermutation
ETAEBFDC axiom:ETsymmetric
BEBGE axiom:betweennesssymmetry
BECGD
BEADE
BEDEF lemma:3.6a
BEFED axiom:betweennesssymmetry
EFADGBFEGC axiom:cutoff1
NCDEG
NCEGD lemma:NCorder
COEGB
EQGG cn:equalityreflexive
COEGG defn:collinear
NEGB lemma:betweennotequal
NEBG lemma:inequalitysymmetric
NCBGD lemma:NChelper
NCDGB lemma:NCorder
COCGD defn:collinear
CODGC lemma:collinearorder
CODGG defn:collinear
NECG lemma:betweennotequal
NCCGB lemma:NChelper
NCGCB lemma:NCorder
TRGCB defn:triangle
ETGCBGCB lemma:ETreflexive
ETGCBGBC axiom:ETpermutation
EFADGBFEGC
BECGD
BEDGC axiom:betweennesssymmetry
PGBCDA lemma:PGrotate
PGDABC lemma:PGsymmetric
PGADCB lemma:PGflip
ANBEAqC+BEDqB lemma:diagonalsmeet
BEAqC
BEDqB
PGBCFE lemma:PGrotate
PGCFEB lemma:PGrotate
PGFEBC lemma:PGrotate
ANBEFmB+BEEmC lemma:diagonalsmeet
BEFmB
BEEmC
EFADCBFEBC axiom:paste2
EFADCBEBCF axiom:EFpermutation
EFEBCFADCB axiom:EFsymmetric
EFEBCFABCD axiom:EFpermutation
EFABCDEBCF axiom:EFsymmetric
qedcase
case 2:BEAED
ETFDCEAB
ETEABFDC axiom:ETsymmetric
ETEABDFC axiom:ETpermutation
ANBEBHD+BECHE lemma:trapezoiddiagonals
BEBHD
BECHE
BEEHC axiom:betweennesssymmetry
COBED assumption
COAED defn:collinear
COEDA lemma:collinearorder
COEDB lemma:collinearorder
NEED lemma:betweennotequal
CODAB lemma:collinear4
COADB lemma:collinearorder
EQBB cn:equalityreflexive
COBCB defn:collinear
NEAD defn:parallel
NEBC defn:parallel
MEADBC defn:meet
NOMEADBC defn:parallel
NCBED reductio
EFBEDCBEDC lemma:EFreflexive
EFBEDCCDEB axiom:EFpermutation
EFCDEBBEDC axiom:EFsymmetric
BEDEA axiom:betweennesssymmetry
BEEDF lemma:3.6a
PGCDAB lemma:PGsymmetric
ANBECpA+BEDpB lemma:diagonalsmeet
BECpA
BEDpB
PGBEFC lemma:PGflip
ANBEBmF+BEEmC lemma:diagonalsmeet
BEBmF
BEEmC
EFCDABBEFC axiom:paste2
EFCDABEBCF axiom:EFpermutation
EFEBCFCDAB axiom:EFsymmetric
EFEBCFABCD axiom:EFpermutation
EFABCDEBCF axiom:EFsymmetric
qedcase
case 3: EQDE
ETFDCEAB
ETFDCBEA axiom:ETpermutation
ETBEAFDC axiom:ETsymmetric
ETBEACDF axiom:ETpermutation
NCDBC lemma:parallelNC
NCEBC cn:equalitysub
NCBEC lemma:NCorder
TRBEC defn:triangle
ETBECBEC lemma:ETreflexive
ETBECCEB axiom:ETpermutation
ETBECCDB cn:equalitysub
PGABCE cn:equalitysub
ANBEAMC+BEBME lemma:diagonalsmeet
BEAMC
BEBME
BEEMB axiom:betweennesssymmetry
COEMB defn:collinear
COBEM lemma:collinearorder
PRAEBC defn:parallelogram
NCAEB lemma:parallelNC
NCBEA lemma:NCorder
OSABEC defn:oppositeside
PGDBCF cn:equalitysub
NCCDF lemma:NCorder
ANBEDmC+BEBmF lemma:diagonalsmeet
BEDmC
BEBmF
BEFmB axiom:betweennesssymmetry
CODmC defn:collinear
COCDm lemma:collinearorder
OSFCDB defn:oppositeside
ANBEAJC+BEBJD lemma:diagonalsmeet
BEAJC
BEBJD
BEBJE cn:equalitysub
ANBEEjC+BEBjF lemma:diagonalsmeet
BEEjC
BEDjC cn:equalitysub
BECjD axiom:betweennesssymmetry
BEBjF
BEFjB axiom:betweennesssymmetry
EFBAECCFDB axiom:paste3
EFBAECDBCF axiom:EFpermutation
EFBAECEBCF cn:equalitysub
EFEBCFBAEC axiom:EFsymmetric
EFEBCFABCE axiom:EFpermutation
EFEBCFABCD cn:equalitysub
EFABCDEBCF axiom:EFsymmetric
qedcase
EFABCDEBCF cases
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists