Sindbad~EG File Manager
PGABCD
PGEBCF
COADE
COADF
ANPRABCD+PRADBC defn:parallelogram
ANPREBCF+PREFBC defn:parallelogram
PRABCD
PRADBC
PREBCF
PREFBC
PRABDC lemma:parallelflip
PREBFC lemma:parallelflip
PRFCEB lemma:parallelsymmetric
EEADBC proposition:34
EEEFBC proposition:34
EEBCEF lemma:congruencesymmetric
EEADEF lemma:congruencetransitive
NEAD defn:parallel
NEEF defn:parallel
NEDA lemma:inequalitysymmetric
NOEFABCDEBCF assumption
BEADF assumption
COADF defn:collinear
COADE
CODAF lemma:collinearorder
CODAE lemma:collinearorder
COAFE lemma:collinear4
COAEF lemma:collinearorder
EFABCDEBCF proposition:35A
NOBEADF reductio
BEADE assumption
ANBEBHE+BECHD lemma:parallelPasch
BEBHE
BECHD
BEDHC axiom:betweennesssymmetry
COBHE defn:collinear
COBEH lemma:collinearorder
NCADB lemma:parallelNC
COADE defn:collinear
EQDD cn:equalityreflexive
COADD defn:collinear
NEDE lemma:betweennotequal
NCDEB lemma:NChelper
NCBED lemma:NCorder
ANBEDHC+COBEH+NCBED
OSDBEC defn:oppositeside
OSCBED lemma:oppositesidesymmetric
PRFCBE lemma:parallelflip
PRBEFC lemma:parallelsymmetric
TPBEFC lemma:paralleldef2B
SSFCBE defn:tarski_parallel
OSFBED lemma:planeseparation
ANBEFeD+COBEe+NCBEF defn:oppositeside
BEFeD
NEFD lemma:betweennotequal
COFeD defn:collinear
NEeE assumption
COBEe
COADE
COADF
NEAD lemma:betweennotequal
CODEF lemma:collinear4
COFDE lemma:collinearorder
COFDe lemma:collinearorder
CODEe lemma:collinear4
COeED lemma:collinearorder
COeEB lemma:collinearorder
COEDB lemma:collinear4
COBED lemma:collinearorder
NCBED
EQeE reductio
BEFED cn:equalitysub
BEDEF axiom:betweennesssymmetry
BEADE
BEADF lemma:3.7b
NOBEADF
NOBEADE reductio
PRBADC lemma:parallelflip
PRDCBA lemma:parallelsymmetric
PRDACB lemma:parallelflip
PGDCBA defn:parallelogram
PRBEFC lemma:parallelflip
PRFCBE lemma:parallelsymmetric
PRFECB lemma:parallelflip
PGFCBE defn:parallelogram
BEEAD assumption
BEDAE axiom:betweennesssymmetry
CODAE defn:collinear
COADE lemma:collinearorder
NEAD lemma:betweennotequal
CODEF lemma:collinear4
CODFE lemma:collinearorder
EFDCBAFCBE proposition:35A
EFDCBAEBCF axiom:EFpermutation
EFEBCFDCBA axiom:EFsymmetric
EFEBCFABCD axiom:EFpermutation
EFABCDEBCF axiom:EFsymmetric
NOBEEAD reductio
BEDAF assumption
ANBECHF+BEBHA lemma:parallelPasch
BECHF
BEBHA
BEAHB axiom:betweennesssymmetry
COCHF defn:collinear
COCFH lemma:collinearorder
NCDAC lemma:parallelNC
CODAF defn:collinear
EQAA cn:equalityreflexive
CODAA defn:collinear
NEAF lemma:betweennotequal
NCAFC lemma:NChelper
NCCFA lemma:NCorder
ANBEAHB+COCFH+NCCFA
OSACFB defn:oppositeside
OSBCFA lemma:oppositesidesymmetric
PREBCF lemma:parallelflip
PRCFEB lemma:parallelsymmetric
TPCFEB lemma:paralleldef2B
SSEBCF defn:tarski_parallel
OSECFA lemma:planeseparation
ANBEEeA+COCFe+NCCFE defn:oppositeside
BEEeA
NEEA lemma:betweennotequal
NEeF assumption
COCFe
CODAF
CODAE lemma:collinearorder
NEDA lemma:betweennotequal
COAFE lemma:collinear4
COEAF lemma:collinearorder
COEeA defn:collinear
COEAe lemma:collinearorder
COAFe lemma:collinear4
COeFA lemma:collinearorder
COeFC lemma:collinearorder
COFAC lemma:collinear4
COCFA lemma:collinearorder
NCCFA
EQeF reductio
BEEFA cn:equalitysub
BEAFE axiom:betweennesssymmetry
BEDAF
BEDAE lemma:3.7b
BEEAD axiom:betweennesssymmetry
NOBEEAD
NOBEDAF reductio
COADF
OREQAD|EQAF|EQDF|BEDAF|BEADF|BEAFD defn:collinear
COADE
OREQAD|EQAE|EQDE|BEDAE|BEADE|BEAED defn:collinear
EQAF assumption
OREQFD|EQFE|EQDE|BEDAE|BEADE|BEAED cn:equalitysub
cases NEAF:EQFD|EQFE|EQDE|BEDAE|BEADE|BEAED
case 1:EQFD
EQAD cn:equalitysub
EQAF assumption
NEAD
NEAF reductio
qedcase
case 2:EQFE
EQAF assumption
NEEF
NEFE lemma:inequalitysymmetric
NEAF reductio
qedcase
case 3:EQDE
EQAF assumption
ANBEEpC+BEBpF lemma:diagonalsmeet
BEEpC
BEBpF
COEpC defn:collinear
COBpF defn:collinear
COFBp lemma:collinearorder
COECp lemma:collinearorder
NCEFC lemma:parallelNC
NEEC lemma:NCdistinct
NCEFB lemma:parallelNC
NEFB lemma:NCdistinct
ANNEEC+NEFB+COECp+COFBp
MEECFB defn:meet
MEDCFB cn:equalitysub
MEDCAB cn:equalitysub
PRDCAB lemma:parallelsymmetric
NOMEDCAB defn:parallel
NEAF reductio
qedcase
case 4:BEDAE
EQAF assumption
BEEAD axiom:betweennesssymmetry
NOBEEAD
NEAF reductio
qedcase
case 5:BEADE
EQAF assumption
NOBEADE
NEAF reductio
qedcase
case 6:BEAED
EQAF assumption
EEAEAE cn:congruencereflexive
EEFEAE cn:equalitysub
EEAEFE lemma:congruencesymmetric
LTFEAD defn:lessthan
EEADEF
LTFEEF lemma:lessthancongruence
EEEFFE cn:equalityreverse
LTFEFE lemma:lessthancongruence
NOLTFEFE lemma:trichotomy2
NEAF reductio
qedcase
NEAF cases
NEAF reductio
EQDF assumption
OREQAF|EQAE|EQFE|BEDAE|BEADE|BEAED cn:equalitysub
cases NEDF:EQAF|EQAE|EQFE|BEDAE|BEADE|BEAED
case 1:EQAF
EQDF assumption
NEAF
NEDF reductio
qedcase
case 2:EQAE
EQDF assumption
ANBEAMC+BEBMD lemma:diagonalsmeet
BEAMC
BEBMD
COABC assumption
EQCC cn:equalityreflexive
COCDC defn:collinear
NEAB defn:parallel
NECD defn:parallel
MEABCD defn:meet
NOMEABCD defn:parallel
NCABC reductio
EFABCDABCD lemma:EFreflexive
EFABCDEBCD cn:equalitysub
EFABCDEBCF cn:equalitysub
NEDF reductio
qedcase
case 3:EQFE
EQDF assumption
EQFE cn:equalitysub
EQEF lemma:equalitysymmetric
NEDF reductio
qedcase
case 4:BEDAE
EQDF assumption
BEEAD axiom:betweennesssymmetry
NOBEEAD
NEDF reductio
qedcase
case 5:BEADE
EQDF assumption
NOBEADE
NEDF reductio
qedcase
case 6:BEAED
EQDF assumption
BEDEA axiom:betweennesssymmetry
EEDEDE cn:congruencereflexive
LTDEDA defn:lessthan
EEDEFE cn:equalitysub
LTFEDA lemma:lessthancongruence2
EEFEEF cn:equalityreverse
LTEFDA lemma:lessthancongruence2
EEDAAD cn:equalityreverse
LTEFAD lemma:lessthancongruence
EEADEF
LTEFEF lemma:lessthancongruence
NOLTEFEF lemma:trichotomy2
NEDF reductio
qedcase
NEDF cases
NEDF reductio
cases BEAFD:EQAD|EQAF|EQDF|BEDAF|BEADF|BEAFD
case 1:EQAD
NOBEAFD assumption
NEAD
BEAFD reductio
qedcase
case 2:EQAF
NOBEAFD assumption
NEAF
BEAFD reductio
qedcase
case 3:EQDF
NOBEAFD assumption
NEDF
BEAFD reductio
qedcase
case 4:BEDAF
NOBEAFD assumption
NOBEDAF
BEAFD reductio
qedcase
case 5:BEADF
NOBEAFD assumption
NOBEADF
BEAFD reductio
qedcase
case 6:BEAFD
BEAFD
qedcase
BEAFD cases
cases BEAED:EQAD|EQAE|EQDE|BEDAE|BEADE|BEAED
case 1:EQAD
NOBEAED assumption
NEAD
BEAED reductio
qedcase
case 2:EQAE
NOBEAED assumption
BEAFD
EEAFAF cn:congruencereflexive
EEAFEF cn:equalitysub
LTEFAD defn:lessthan
EEADEF
LTEFEF lemma:lessthancongruence
NOLTEFEF lemma:trichotomy2
BEAED reductio
qedcase
case 3:EQDE
NOBEAED assumption
BEDFA axiom:betweennesssymmetry
EEDFDF cn:congruencereflexive
LTDFDA defn:lessthan
LTEFDA cn:equalitysub
EEDAEF lemma:congruenceflip
LTEFEF lemma:lessthancongruence
NOLTEFEF lemma:trichotomy2
BEAED reductio
qedcase
case 4:BEDAE
NOBEAED assumption
BEEAD axiom:betweennesssymmetry
NOBEEAD
BEAED reductio
qedcase
case 5:BEADE
NOBEAED assumption
NOBEADE
BEAED reductio
qedcase
case 6:BEAED
BEAED
qedcase
BEAED cases
BEAEF assumption
BEEFD lemma:3.6a
EEEFEF cn:congruencereflexive
LTEFED defn:lessthan
BEAED
BEDEA axiom:betweennesssymmetry
EEDEDE cn:congruencereflexive
LTDEDA defn:lessthan
EEEDDE cn:equalityreverse
LTEFDE lemma:lessthancongruence
LTEFDA lemma:lessthantransitive
EEDAAD cn:equalityreverse
LTEFAD lemma:lessthancongruence
LTEFEF lemma:lessthancongruence
NOLTEFEF lemma:trichotomy2
NOBEAEF reductio
BEAFE assumption
BEFED lemma:3.6a
EEFEFE cn:congruencereflexive
LTFEFD defn:lessthan
BEAFD
BEDFA axiom:betweennesssymmetry
EEDFDF cn:congruencereflexive
LTDFDA defn:lessthan
EEFDDF cn:equalityreverse
LTFEDF lemma:lessthancongruence
LTFEDA lemma:lessthantransitive
EEDAAD cn:equalityreverse
LTFEAD lemma:lessthancongruence
EEADFE lemma:congruenceflip
LTFEFE lemma:lessthancongruence
NOLTFEFE lemma:trichotomy2
NOBEAFE reductio
EQEF axiom:connectivity
NEEF
EFABCDEBCF reductio
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists