Sindbad~EG File Manager
BEBDC
NCBCA
COBDC defn:collinear
EQAD assumption
COBAC cn:equalitysub
COBCA lemma:collinearorder
NEAD reductio
ANBEAMD+EEMAMD proposition:10
BEAMD
EEMAMD
EEAMMD lemma:congruenceflip
COCBD lemma:collinearorder
EQBB cn:equalityreflexive
COCBB defn:collinear
NCCBA lemma:NCorder
NEBD lemma:betweennotequal
NCBDA lemma:NChelper
COBDC defn:collinear
EQDD cn:equalityreflexive
COBDD defn:collinear
NEDC lemma:betweennotequal
NECD lemma:inequalitysymmetric
NCCDA lemma:NChelper
NCADC lemma:NCorder
COAMD defn:collinear
COADM lemma:collinearorder
EQAA cn:equalityreflexive
COADA defn:collinear
NEAM lemma:betweennotequal
NCAMC lemma:NChelper
EQCM assumption
COACM defn:collinear
COAMC lemma:collinearorder
NECM reductio
NEMC lemma:inequalitysymmetric
ANBECME+EEMEMC lemma:extension
BECME
EEMEMC
EEMCME lemma:congruencesymmetric
EECMME lemma:congruenceflip
MICME defn:midpoint
NEAM lemma:betweennotequal
NCADB lemma:NCorder
NCAMB lemma:NChelper
EQBM assumption
COABM defn:collinear
COAMB lemma:collinearorder
NEBM reductio
NEMB lemma:inequalitysymmetric
ANBEBMF+EEMFMB lemma:extension
BEBMF
EEMFMB
EEMFBM lemma:congruenceflip
EEBMMF lemma:congruencesymmetric
MIBMF defn:midpoint
EEMDMA lemma:congruencesymmetric
BEDMA axiom:betweennesssymmetry
EEDMMA lemma:congruenceflip
MIDMA defn:midpoint
NEBD lemma:betweennotequal
NEDC lemma:betweennotequal
NEBC lemma:NCdistinct
EEBDFA lemma:pointreflectionisometry
EEDCAE lemma:pointreflectionisometry
EEBCFE lemma:pointreflectionisometry
BEBDC
BEFAE lemma:betweennesspreserved
BEEAF axiom:betweennesssymmetry
EQFF cn:equalityreflexive
NEAF lemma:betweennotequal
RAAFF lemma:ray4
EQBB cn:equalityreflexive
NEBD lemma:betweennotequal
NEDB lemma:inequalitysymmetric
RADBB lemma:ray4
EQAA cn:equalityreflexive
NEDA lemma:betweennotequal
RADAA lemma:ray4
EQDD cn:equalityreflexive
NEAD lemma:inequalitysymmetric
RAADD lemma:ray4
NCBMA lemma:NCorder
COBMF defn:collinear
EQMM cn:equalityreflexive
COBMM defn:collinear
NEMF lemma:betweennotequal
NEFM lemma:inequalitysymmetric
NCFMA lemma:NChelper
NCAMF lemma:NCorder
COAMA defn:collinear
COAMD defn:collinear
NCADF lemma:NChelper
NCFAD lemma:NCorder
EEDBAF lemma:congruenceflip
MIBMF
MIAMD defn:midpoint
NEBA lemma:NCdistinct
EEBAFD lemma:pointreflectionisometry
EEFDBA lemma:congruencesymmetric
RAAFF
RAADD
RADBB
RADAA
EEAFDB lemma:congruencesymmetric
EEADDA cn:equalityreverse
EAFADBDA defn:equalangles
NCBDA lemma:NChelper
EABDAADB lemma:ABCequalsCBA
EAFADADB lemma:equalanglestransitive
EAADBFAD lemma:equalanglessymmetric
NCDAB lemma:NCorder
NCFAD lemma:NCorder
EAFADDAF lemma:ABCequalsCBA
EAADBDAF lemma:equalanglestransitive
EADAFADB lemma:equalanglessymmetric
NCADB lemma:NCorder
EAADBBDA lemma:ABCequalsCBA
EADAFBDA lemma:equalanglestransitive
OSBADF defn:oppositeside
OSFADB lemma:oppositesidesymmetric
BEFAE
BECDB axiom:betweennesssymmetry
PRFECB proposition:27
PREFBC lemma:parallelflip
EEDCEA lemma:congruenceflip
EEEADC lemma:congruencesymmetric
EEBDAF lemma:congruenceflip
EEAFBD lemma:congruencesymmetric
EEMCEM lemma:congruenceflip
EEEMMC lemma:congruencesymmetric
NEEA lemma:betweennotequal
NEAE lemma:inequalitysymmetric
EQEE cn:equalityreflexive
RAAEE lemma:ray4
NEDC lemma:betweennotequal
EQCC cn:equalityreflexive
RADCC lemma:ray4
EEEMMC lemma:congruenceflip
BEEMC axiom:betweennesssymmetry
MIEMC defn:midpoint
MIDMA
EQED assumption
BECMD cn:equalitysub
COCMD defn:collinear
COMDC lemma:collinearorder
COAMD defn:collinear
COMDA lemma:collinearorder
NEMD lemma:betweennotequal
CODCA lemma:collinear4
CODCB lemma:collinearorder
NEDC lemma:betweennotequal
COCAB lemma:collinear4
COBCA lemma:collinearorder
NEED reductio
NEDA lemma:betweennotequal
NEAD lemma:inequalitysymmetric
EEEDCA lemma:pointreflectionisometry
EEAEDC lemma:pointreflectionisometry
COEAF defn:collinear
COFAE lemma:collinearorder
NCFAD
COFAA defn:collinear
NCEAD lemma:NChelper
RAAEE
RAADD
RADAA
EEADDA
EEAEDC
EEEDCA
EAEADCDA defn:equalangles
NCCDA lemma:NCorder
EACDAADC lemma:ABCequalsCBA
EAEADADC lemma:equalanglestransitive
NCDAE lemma:NCorder
EADAEEAD lemma:ABCequalsCBA
EADAECDA lemma:equalanglestransitive
ANBEEAF+EAFADADB+EAFADBDA+EADAFBDA+EAEADADC+EAEADCDA+EADAECDA+PREFBC+EEEADC+EEAFBD+EEAMMD+EEEMMC+EEBMMF+BEEMC+BEBMF+BEAMD
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists