Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/Prop29C.prf

PRGBHD
SSBDGH
BEEGH
NCGBH  lemma:parallelNC
EQGB assumption
 COGBH defn:collinear
NEGB reductio
NEBG lemma:inequalitysymmetric
ANBEBGA+EEGABG lemma:extension
BEBGA
BEAGB axiom:betweennesssymmetry
NEAB lemma:betweennotequal
COABG  defn:collinear
COGBA  lemma:collinearorder
PRHDGB lemma:parallelsymmetric
PRHDAB lemma:collinearparallel
PRHDBA lemma:parallelflip
COBAG  lemma:collinearorder
NEGA  lemma:betweennotequal
PRHDGA lemma:collinearparallel
PRHDAG lemma:parallelflip
PRAGHD lemma:parallelsymmetric
ANNEAG+NEHD+COAGa+COAGg+NEag+COHDh+COHDd+NEhd+NOMEAGHD+BEamd+BEhmg  defn:parallel
NEAG
NEHD
NEDH lemma:inequalitysymmetric
COAGa
COAGg
NEag
NEhd
BEamd
BEhmg
ANBEDHC+EEHCDH  lemma:extension
BEAGB
BEDHC
BEHGE axiom:betweennesssymmetry
NEAB  lemma:betweennotequal
NEBA  lemma:inequalitysymmetric
NEDC lemma:betweennotequal
NECD  lemma:inequalitysymmetric
COAGB  defn:collinear
COGAB  lemma:collinearorder
COGAa lemma:collinearorder
NEGA  lemma:inequalitysymmetric
COABa  lemma:collinear4
COGAg  lemma:collinearorder
COABg  lemma:collinear4
CODHC  defn:collinear
COHDC  lemma:collinearorder
COHDh
CODCh  lemma:collinear4
COCDh  lemma:collinearorder
COHDd
CODdC  lemma:collinear4
COCDd  lemma:collinearorder
COABa
COABg
COCDh
COCDd
MEABCD assumption
 ANNEAB+NECD+COABM+COCDM  defn:meet
 COABM
 COCDM
 COBAG  lemma:collinearorder
 COBAM lemma:collinearorder
 COAGM  lemma:collinear4
 COCDH  lemma:collinearorder
 CODHM lemma:collinear4
 COHDM lemma:collinearorder
 ANNEAG+NEHD+COAGM+COHDM
 MEAGHD  defn:meet
 NOMEAGHD
NOMEABCD reductio
PRABCD  defn:parallel
BEAGB
BECHD  axiom:betweennesssymmetry
BEEGH  axiom:betweennesssymmetry
EQGG  cn:equalityreflexive
COGHG  defn:collinear
NCGBH  lemma:parallelNC
NCGHB  lemma:NCorder
SSDBGH  lemma:samesidesymmetric
OSBGHA  defn:oppositeside
OSDGHA  lemma:planeseparation
OSAGHD  lemma:oppositesidesymmetric
ANEAAGHGHD+EAEGBGHD+RTBGHGHD  proposition:29
EAEGBGHD
RTBGHGHD 
ANEAEGBGHD+RTBGHGHD

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists