Sindbad~EG File Manager
PRGBHD
SSBDGH
BEEGH
NCGBH lemma:parallelNC
EQGB assumption
COGBH defn:collinear
NEGB reductio
NEBG lemma:inequalitysymmetric
ANBEBGA+EEGABG lemma:extension
BEBGA
BEAGB axiom:betweennesssymmetry
NEAB lemma:betweennotequal
COABG defn:collinear
COGBA lemma:collinearorder
PRHDGB lemma:parallelsymmetric
PRHDAB lemma:collinearparallel
PRHDBA lemma:parallelflip
COBAG lemma:collinearorder
NEGA lemma:betweennotequal
PRHDGA lemma:collinearparallel
PRHDAG lemma:parallelflip
PRAGHD lemma:parallelsymmetric
ANNEAG+NEHD+COAGa+COAGg+NEag+COHDh+COHDd+NEhd+NOMEAGHD+BEamd+BEhmg defn:parallel
NEAG
NEHD
NEDH lemma:inequalitysymmetric
COAGa
COAGg
NEag
NEhd
BEamd
BEhmg
ANBEDHC+EEHCDH lemma:extension
BEAGB
BEDHC
BEHGE axiom:betweennesssymmetry
NEAB lemma:betweennotequal
NEBA lemma:inequalitysymmetric
NEDC lemma:betweennotequal
NECD lemma:inequalitysymmetric
COAGB defn:collinear
COGAB lemma:collinearorder
COGAa lemma:collinearorder
NEGA lemma:inequalitysymmetric
COABa lemma:collinear4
COGAg lemma:collinearorder
COABg lemma:collinear4
CODHC defn:collinear
COHDC lemma:collinearorder
COHDh
CODCh lemma:collinear4
COCDh lemma:collinearorder
COHDd
CODdC lemma:collinear4
COCDd lemma:collinearorder
COABa
COABg
COCDh
COCDd
MEABCD assumption
ANNEAB+NECD+COABM+COCDM defn:meet
COABM
COCDM
COBAG lemma:collinearorder
COBAM lemma:collinearorder
COAGM lemma:collinear4
COCDH lemma:collinearorder
CODHM lemma:collinear4
COHDM lemma:collinearorder
ANNEAG+NEHD+COAGM+COHDM
MEAGHD defn:meet
NOMEAGHD
NOMEABCD reductio
PRABCD defn:parallel
BEAGB
BECHD axiom:betweennesssymmetry
BEEGH axiom:betweennesssymmetry
EQGG cn:equalityreflexive
COGHG defn:collinear
NCGBH lemma:parallelNC
NCGHB lemma:NCorder
SSDBGH lemma:samesidesymmetric
OSBGHA defn:oppositeside
OSDGHA lemma:planeseparation
OSAGHD lemma:oppositesidesymmetric
ANEAAGHGHD+EAEGBGHD+RTBGHGHD proposition:29
EAEGBGHD
RTBGHGHD
ANEAEGBGHD+RTBGHGHD
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists