Sindbad~EG File Manager
TRABC
TRDEF
EEABDE
EEACDF
AOEDFBAC
NCABC defn:triangle
EQAB assumption
COABC defn:collinear
NEAB reductio
EQAC assumption
COABC defn:collinear
NEAC reductio
NECA lemma:inequalitysymmetric
EQBC assumption
COABC defn:collinear
NEBC reductio
NECB lemma:inequalitysymmetric
ANBEPTQ+RAABP+RAACQ+EAEDFBAT defn:anglelessthan
RAABP
RAACQ
EAEDFBAT
NCBAT lemma:equalanglesNC
EQAT assumption
COBAT defn:collinear
NEAT reductio
EQAC assumption
COABC defn:collinear
NEAC reductio
ANRAATH+EEAHAC lemma:layoff
RAATH
EEAHAC
EEACDF
EEAHDF lemma:congruencetransitive
COHAB assumption
COATH lemma:rayimpliescollinear
COHAT lemma:collinearorder
NEAH lemma:raystrict
NEHA lemma:inequalitysymmetric
COABT lemma:collinear4
COBAT lemma:collinearorder
NCHAB reductio
EQHB assumption
COHAB defn:collinear
NEHB reductio
EEABDE
EAEDFBAT
RAATH
EQBB cn:equalityreflexive
RAABB lemma:ray4
EAEDFBAH lemma:equalangleshelper
EABAHEDF lemma:equalanglessymmetric
EAHABFDE lemma:equalanglesflip
ANEEHBFE+EAAHBDFE+EAABHDEF proposition:04
RAAQC lemma:ray5
RAAPB lemma:ray5
COAQC lemma:rayimpliescollinear
COAPB lemma:rayimpliescollinear
COQAP assumption
COAPQ lemma:collinearorder
COQAC lemma:collinearorder
COQAP lemma:collinearorder
NEAQ lemma:ray2
NEQA lemma:inequalitysymmetric
COACP lemma:collinear4
COPAB lemma:collinearorder
COPAC lemma:collinearorder
NEAP lemma:raystrict
NEPA lemma:inequalitysymmetric
COABC lemma:collinear4
NCQAP reductio
TRQAP defn:triangle
BEPTQ
BEQTP axiom:betweennesssymmetry
ANRAATJ+BECJB lemma:crossbar
RAATJ
BECJB
RAATH
RAAJH lemma:ray3
EEACAH lemma:congruencesymmetric
COACH assumption
COHAC lemma:collinearorder
NEAH lemma:raystrict
NEHA lemma:inequalitysymmetric
COAJH lemma:rayimpliescollinear
COHAJ lemma:collinearorder
COACJ lemma:collinear4
COCJB defn:collinear
COCJA lemma:collinearorder
NECJ lemma:betweennotequal
COJBA lemma:collinear4
COATJ lemma:rayimpliescollinear
COJAT lemma:collinearorder
COJAB lemma:collinearorder
NEAJ lemma:raystrict
NEJA lemma:inequalitysymmetric
COATB lemma:collinear4
COBAT lemma:collinearorder
NCACH reductio
TRACH defn:triangle
ISACH defn:isosceles
EAACHAHC proposition:05
ORBEAHJ|EQJH|BEAJH lemma:ray1
cases LTHBCB:BEAHJ|EQJH|BEAJH
case 1:BEAHJ
COCJH assumption
COAHJ defn:collinear
COJHA lemma:collinearorder
COJHC lemma:collinearorder
NEHJ lemma:betweennotequal
NEJH lemma:inequalitysymmetric
COHAC lemma:collinear4
COACH lemma:collinearorder
NCCJH reductio
TRCJH defn:triangle
BEJHA axiom:betweennesssymmetry
AOJCHCHA proposition:16
COHCJ assumption
COCJH lemma:collinearorder
NCHCJ reductio
EAHCJJCH lemma:ABCequalsCBA
AOHCJCHA lemma:angleorderrespectscongruence2
COAHC assumption
COACH lemma:collinearorder
NCAHC reductio
EAAHCCHA lemma:ABCequalsCBA
AOHCJAHC lemma:angleorderrespectscongruence
RAHBB lemma:ray4
BECJB
EQCC cn:equalityreflexive
COCHJ assumption
COCJH lemma:collinearorder
NCCHJ reductio
EQCH assumption
COCHJ defn:collinear
NECH reductio
NEHC lemma:inequalitysymmetric
RAHCC lemma:ray4
EACHJCHJ lemma:equalanglesreflexive
NECJ lemma:angledistinct
NECH lemma:angledistinct
AOCHJCHB defn:anglelessthan
COCAH assumption
COACH lemma:collinearorder
NCACH
NCCAH reductio
TRCAH defn:triangle
AOACHCHJ proposition:16
AOHCJAHC
EAACHAHC
AOHCJACH lemma:angleorderrespectscongruence
AOACHCHJ
AOHCJCHJ lemma:angleordertransitive
AOCHJCHB
AOHCJCHB lemma:angleordertransitive
EQHH cn:equalityreflexive
RACHH lemma:ray4
RACJB lemma:ray4
EAHCJHCJ lemma:equalanglesreflexive
EAHCJHCB lemma:equalangleshelper
EAHCBHCJ lemma:equalanglessymmetric
AOHCBCHB lemma:angleorderrespectscongruence2
COBHC assumption
COCJB defn:collinear
COBCH lemma:collinearorder
COBCJ lemma:collinearorder
NECB lemma:betweennotequal
NEBC lemma:inequalitysymmetric
COCHJ lemma:collinear4
NCBHC reductio
TRBHC defn:triangle
EABHCCHB lemma:ABCequalsCBA
AOHCBBHC lemma:angleorderrespectscongruence
LTBHBC proposition:19
EEBHHB cn:equalityreverse
LTHBBC lemma:lessthancongruence2
EEBCCB cn:equalityreverse
LTHBCB lemma:lessthancongruence
qedcase
case 2:EQJH
BECHB cn:equalitysub
BEBHC axiom:betweennesssymmetry
EEBHHB cn:equalityreverse
LTHBBC defn:lessthan
EEBCCB cn:equalityreverse
LTHBCB lemma:lessthancongruence
qedcase
case 3:BEAJH
BEHJA axiom:betweennesssymmetry
COCJH assumption
COAHJ defn:collinear
COJHA lemma:collinearorder
COJHC lemma:collinearorder
NEHJ lemma:betweennotequal
NEJH lemma:inequalitysymmetric
COHAC lemma:collinear4
COACH lemma:collinearorder
NCCJH reductio
COHCB assumption
COCJB defn:collinear
COBCJ lemma:collinearorder
COBCH lemma:collinearorder
NECB lemma:betweennotequal
NEBC lemma:inequalitysymmetric
COCHJ lemma:collinear4
COCJH lemma:collinearorder
NCCJH
NCHCB reductio
EQHH cn:equalityreflexive
EQAA cn:equalityreflexive
EQCH assumption
COCHB defn:collinear
COHCB lemma:collinearorder
NECH reductio
RACAA lemma:ray4
EAHCBHCB lemma:equalanglesreflexive
RACBJ lemma:ray4
RACHH lemma:ray4
EAHCBHCJ lemma:equalangleshelper
BEHJA axiom:betweennesssymmetry
AOHCBHCA defn:anglelessthan
COBCH assumption
COHCB lemma:collinearorder
NCBCH reductio
EABCHHCB lemma:ABCequalsCBA
AOBCHHCA lemma:angleorderrespectscongruence2
NCACH
EAACHHCA lemma:ABCequalsCBA
AOBCHACH lemma:angleorderrespectscongruence
EAACHAHC
EAAHCACH lemma:equalanglessymmetric
AOBCHAHC lemma:angleorderrespectscongruence
COAHC assumption
COACH lemma:collinearorder
NCAHC reductio
EAAHCCHA lemma:ABCequalsCBA
EQCC cn:equalityreflexive
EQBB cn:equalityreflexive
NEHB lemma:angledistinct
NEHC lemma:angledistinct
NEHA lemma:angledistinct
RAHCC lemma:ray4
RAHBB lemma:ray4
RAHAJ lemma:ray4
EAAHCCHJ lemma:equalangleshelper
BECJB
AOAHCCHB defn:anglelessthan
COBHC assumption
COHCB lemma:collinearorder
NCBHC reductio
EABHCCHB lemma:ABCequalsCBA
AOAHCBHC lemma:angleorderrespectscongruence
AOBCHBHC lemma:angleordertransitive
COHCB assumption
COBHC lemma:collinearorder
NCHCB reductio
EAHCBBCH lemma:ABCequalsCBA
AOHCBBHC lemma:angleorderrespectscongruence2
TRBHC defn:triangle
LTBHBC proposition:19
EEBHHB cn:equalityreverse
LTHBBC lemma:lessthancongruence2
EEBCCB cn:equalityreverse
LTHBCB lemma:lessthancongruence
qedcase
LTHBCB cases
EEHBFE
EEFEEF cn:equalityreverse
EEHBEF lemma:congruencetransitive
LTEFCB lemma:lessthancongruence2
EECBBC cn:equalityreverse
LTEFBC lemma:lessthancongruence
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists