Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/Prop23B.prf

NEAB
NCDCE
NCABP
NEBA  lemma:inequalitysymmetric
ANRAABG+EAFAGDCE  proposition:23
RAABG
NEAG   lemma:raystrict
EAFAGDCE
COABF  assumption
 EADCEFAG  lemma:equalanglessymmetric
 NCFAG  lemma:equalanglesNC
 COABG  lemma:rayimpliescollinear
 COBFG  lemma:collinear4
 COBFA  lemma:collinearorder
 EQFB   assumption
  RAAFG  cn:equalitysub
  COAFG  lemma:rayimpliescollinear
  COFAG  lemma:collinearorder
 NEFB  reductio
 NEBF   lemma:inequalitysymmetric
 COFAG  lemma:collinear4
NCABF reductio
PAFHABH  proposition:12
ANCOFHH+COABH+COABJ+RRJHF  defn:perpat
COABH
RRJHF
NCJHF   lemma:rightangleNC
EQFH  assumption
 COABF  cn:equalitysub
 NCABF
NEFH   reductio
EQJH   assumption
 COJHF  defn:collinear
NEJH   reductio
NEHJ   lemma:inequalitysymmetric
ANBEJHT+EEHTHJ  lemma:extension
BEJHT
COJHT  defn:collinear
COABJ
COABH
COBJH  lemma:collinear4
NEJT  lemma:betweennotequal
COHJB  lemma:collinearorder
COHJT lemma:collinearorder
NEJH  lemma:betweennotequal
NEHJ  lemma:inequalitysymmetric
COJBT  lemma:collinear4
COJTB lemma:collinearorder 
COBAJ lemma:collinearorder
COBAH  lemma:collinearorder
COAJH lemma:collinear4
COHJA lemma:collinearorder
COJAT  lemma:collinear4
COJTA  lemma:collinearorder
COJTP assumption
 COJTP 
 COABP  lemma:collinear5
NCJTP  reductio
ANRRJHQ+OSQJTP  proposition:11B
RRJHQ
NCJHQ  lemma:rightangleNC
EQHQ assumption
 COJHQ  defn:collinear
NEHQ  reductio
EQHF  assumption
 COJHF defn:collinear
NEHF  reductio
ANRAHQS+EEHSHF  lemma:layoff
RAHQS
EEHSHF
EQFF   cn:equalityreflexive
NEDC  lemma:angledistinct
NECD   lemma:inequalitysymmetric
NECE  lemma:angledistinct
RRJHF
COJHA  lemma:collinearorder
RRJHQ
RRJHS  lemma:8.3
RRSHJ  lemma:8.2
EAJHFJHS   lemma:Euclid4
EQSS   cn:equalityreflexive
NEHS   lemma:angledistinct
cases EAFAGSAG:EQAH|NEAH
 case 1:EQAH
  NEAG
  RRJAF  cn:equalitysub
  RRJAS  cn:equalitysub
  COABH
  COABJ
  COABG  lemma:rayimpliescollinear
  COJHG  lemma:collinear5
  COJAG  cn:equalitysub
  RRJAF
  NEGA  lemma:inequalitysymmetric
  RRGAF  lemma:collinearright
  RRFAG  lemma:8.2
  RRJAS
  RRGAS  lemma:collinearright
  RRSAG  lemma:8.2
  EAFAGSAG  lemma:Euclid4
 qedcase
 case 2:NEAH  
  EEFHSH  lemma:doublereverse
  RRJHF
  RRAHF   lemma:collinearright
  RRFHA   lemma:8.2
  RRSHJ  
  RRJHS   lemma:8.2
  RRAHS   lemma:collinearright 
  EAAHFAHS  lemma:Euclid4
  NCFHA    lemma:rightangleNC
  EAFHAAHF  lemma:ABCequalsCBA
  EAFHAAHS  lemma:equalanglestransitive
  NCAHS     lemma:rightangleNC
  EAAHSSHA  lemma:ABCequalsCBA
  EAFHASHA  lemma:equalanglestransitive
  EEHFHS   lemma:congruenceflip
  EEHAHA   cn:congruencereflexive
  COSHA   assumption
   COAHS   lemma:collinearorder
  NCSHA    reductio
  ANEEFASA+EAHFAHSA+EAHAFHAS  proposition:04 
  EAHAFHAS  
  COFAH  assumption
   COFHA  lemma:collinearorder
  NCFAH  reductio
  EAFAHHAF  lemma:ABCequalsCBA
  COHAS assumption
   COSHA  lemma:collinearorder
  NCHAS  reductio
  EAHASSAH  lemma:ABCequalsCBA
  EAFAHHAS  lemma:equalanglestransitive
  EAFAHSAH  lemma:equalanglestransitive
  RAABG 
  COABH
  EQAA   cn:equalityreflexive
  COABA   defn:collinear
  COABG   lemma:rayimpliescollinear
  cases COGHA:EQGH|NEGH
   case 1:EQGH
    COGHA  defn:collinear
   qedcase
   case 2: NEGH
    COGHA   lemma:collinear5
   qedcase
  COGHA cases
  NEFA   lemma:angledistinct
  NEAF  lemma:inequalitysymmetric
  RAAFF   lemma:ray4
  NESA   lemma:angledistinct
  NEAS    lemma:inequalitysymmetric
  RAASS   lemma:ray4
  OREQGH|EQGA|EQHA|BEHGA|BEGHA|BEGAH  defn:collinear
  cases EAFAGSAG:EQGH|EQGA|EQHA|BEHGA|BEGHA|BEGAH
   case 1:EQGH
    NOEAFAGSAG assumption
     EAFAGSAG cn:equalitysub
    EAFAGSAG reductio
   qedcase
   case 2:EQGA
    NOEAFAGSAG assumption
     RAABG
     NEAG  lemma:raystrict
     NEGA  lemma:inequalitysymmetric
    EAFAGSAG reductio
   qedcase
   case 3:EQHA
    NOEAFAGSAG assumption
     NEHA  lemma:inequalitysymmetric
    EAFAGSAG reductio
   qedcase
   case 4:BEHGA
    BEAGH axiom:betweennesssymmetry
    RAAHG lemma:ray4
    EAFAHFAH  lemma:equalanglesreflexive
    COSAH   assumption
     COSHA  lemma:collinearorder
    NCSAH   reductio
    EASAHSAH  lemma:equalanglesreflexive
    EAFAHFAG  lemma:equalangleshelper
    EASAHSAG  lemma:equalangleshelper
    EAFAGFAH  lemma:equalanglessymmetric 
    EAFAGSAH   lemma:equalanglestransitive
    EAFAGSAG  lemma:equalanglestransitive
   qedcase
   case 5:BEGHA
    BEAHG  axiom:betweennesssymmetry
    RAAHG lemma:ray4
    EAFAHFAH  lemma:equalanglesreflexive
    COSAH   assumption
     COSHA  lemma:collinearorder
    NCSAH   reductio
    EASAHSAH  lemma:equalanglesreflexive
    EAFAHFAG  lemma:equalangleshelper
    EASAHSAG  lemma:equalangleshelper
    EAFAGFAH  lemma:equalanglessymmetric 
    EAFAGSAH   lemma:equalanglestransitive
    EAFAGSAG  lemma:equalanglestransitive
   qedcase
   case 6:BEGAH
    BEHAG   axiom:betweennesssymmetry
    RAAFF
    SUHAFFG   defn:supplement
    SUHASSG   defn:supplement
    EAFAHSAH
    EAHAFHAS  lemma:equalanglesflip
    EAFAGSAG  lemma:supplements
   qedcase
  EAFAGSAG cases
 qedcase
EAFAGSAG cases
EASAGFAG  lemma:equalanglessymmetric
EAFAGDCE
EASAGDCE lemma:equalanglestransitive
OSQJTP
RAHQS 
RAHSQ    lemma:ray5    
COJTH    lemma:collinearorder
OSSJTP  lemma:9.5
ANBESMP+COJTM+NCJTS  defn:oppositeside
BESMP
COJTM
NCJTS
COABJ
COJTA
COJTB
NEJT
COTAB  lemma:collinear4
COABT  lemma:collinearorder
COBAT  lemma:collinearorder
COAJT  lemma:collinear4
COJTA  lemma:collinearorder
COBJT  lemma:collinear4
COJTB  lemma:collinearorder
NEJT
COABM   lemma:collinear5
COABS  assumption
 COABJ
 COABT
 COJTS  lemma:collinear5
NCABS  reductio
OSSABP  defn:oppositeside
ANRAABG+EASAGDCE+OSSABP

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists