Sindbad~EG File Manager
NEAB
NCDCE
NCABP
NEBA lemma:inequalitysymmetric
ANRAABG+EAFAGDCE proposition:23
RAABG
NEAG lemma:raystrict
EAFAGDCE
COABF assumption
EADCEFAG lemma:equalanglessymmetric
NCFAG lemma:equalanglesNC
COABG lemma:rayimpliescollinear
COBFG lemma:collinear4
COBFA lemma:collinearorder
EQFB assumption
RAAFG cn:equalitysub
COAFG lemma:rayimpliescollinear
COFAG lemma:collinearorder
NEFB reductio
NEBF lemma:inequalitysymmetric
COFAG lemma:collinear4
NCABF reductio
PAFHABH proposition:12
ANCOFHH+COABH+COABJ+RRJHF defn:perpat
COABH
RRJHF
NCJHF lemma:rightangleNC
EQFH assumption
COABF cn:equalitysub
NCABF
NEFH reductio
EQJH assumption
COJHF defn:collinear
NEJH reductio
NEHJ lemma:inequalitysymmetric
ANBEJHT+EEHTHJ lemma:extension
BEJHT
COJHT defn:collinear
COABJ
COABH
COBJH lemma:collinear4
NEJT lemma:betweennotequal
COHJB lemma:collinearorder
COHJT lemma:collinearorder
NEJH lemma:betweennotequal
NEHJ lemma:inequalitysymmetric
COJBT lemma:collinear4
COJTB lemma:collinearorder
COBAJ lemma:collinearorder
COBAH lemma:collinearorder
COAJH lemma:collinear4
COHJA lemma:collinearorder
COJAT lemma:collinear4
COJTA lemma:collinearorder
COJTP assumption
COJTP
COABP lemma:collinear5
NCJTP reductio
ANRRJHQ+OSQJTP proposition:11B
RRJHQ
NCJHQ lemma:rightangleNC
EQHQ assumption
COJHQ defn:collinear
NEHQ reductio
EQHF assumption
COJHF defn:collinear
NEHF reductio
ANRAHQS+EEHSHF lemma:layoff
RAHQS
EEHSHF
EQFF cn:equalityreflexive
NEDC lemma:angledistinct
NECD lemma:inequalitysymmetric
NECE lemma:angledistinct
RRJHF
COJHA lemma:collinearorder
RRJHQ
RRJHS lemma:8.3
RRSHJ lemma:8.2
EAJHFJHS lemma:Euclid4
EQSS cn:equalityreflexive
NEHS lemma:angledistinct
cases EAFAGSAG:EQAH|NEAH
case 1:EQAH
NEAG
RRJAF cn:equalitysub
RRJAS cn:equalitysub
COABH
COABJ
COABG lemma:rayimpliescollinear
COJHG lemma:collinear5
COJAG cn:equalitysub
RRJAF
NEGA lemma:inequalitysymmetric
RRGAF lemma:collinearright
RRFAG lemma:8.2
RRJAS
RRGAS lemma:collinearright
RRSAG lemma:8.2
EAFAGSAG lemma:Euclid4
qedcase
case 2:NEAH
EEFHSH lemma:doublereverse
RRJHF
RRAHF lemma:collinearright
RRFHA lemma:8.2
RRSHJ
RRJHS lemma:8.2
RRAHS lemma:collinearright
EAAHFAHS lemma:Euclid4
NCFHA lemma:rightangleNC
EAFHAAHF lemma:ABCequalsCBA
EAFHAAHS lemma:equalanglestransitive
NCAHS lemma:rightangleNC
EAAHSSHA lemma:ABCequalsCBA
EAFHASHA lemma:equalanglestransitive
EEHFHS lemma:congruenceflip
EEHAHA cn:congruencereflexive
COSHA assumption
COAHS lemma:collinearorder
NCSHA reductio
ANEEFASA+EAHFAHSA+EAHAFHAS proposition:04
EAHAFHAS
COFAH assumption
COFHA lemma:collinearorder
NCFAH reductio
EAFAHHAF lemma:ABCequalsCBA
COHAS assumption
COSHA lemma:collinearorder
NCHAS reductio
EAHASSAH lemma:ABCequalsCBA
EAFAHHAS lemma:equalanglestransitive
EAFAHSAH lemma:equalanglestransitive
RAABG
COABH
EQAA cn:equalityreflexive
COABA defn:collinear
COABG lemma:rayimpliescollinear
cases COGHA:EQGH|NEGH
case 1:EQGH
COGHA defn:collinear
qedcase
case 2: NEGH
COGHA lemma:collinear5
qedcase
COGHA cases
NEFA lemma:angledistinct
NEAF lemma:inequalitysymmetric
RAAFF lemma:ray4
NESA lemma:angledistinct
NEAS lemma:inequalitysymmetric
RAASS lemma:ray4
OREQGH|EQGA|EQHA|BEHGA|BEGHA|BEGAH defn:collinear
cases EAFAGSAG:EQGH|EQGA|EQHA|BEHGA|BEGHA|BEGAH
case 1:EQGH
NOEAFAGSAG assumption
EAFAGSAG cn:equalitysub
EAFAGSAG reductio
qedcase
case 2:EQGA
NOEAFAGSAG assumption
RAABG
NEAG lemma:raystrict
NEGA lemma:inequalitysymmetric
EAFAGSAG reductio
qedcase
case 3:EQHA
NOEAFAGSAG assumption
NEHA lemma:inequalitysymmetric
EAFAGSAG reductio
qedcase
case 4:BEHGA
BEAGH axiom:betweennesssymmetry
RAAHG lemma:ray4
EAFAHFAH lemma:equalanglesreflexive
COSAH assumption
COSHA lemma:collinearorder
NCSAH reductio
EASAHSAH lemma:equalanglesreflexive
EAFAHFAG lemma:equalangleshelper
EASAHSAG lemma:equalangleshelper
EAFAGFAH lemma:equalanglessymmetric
EAFAGSAH lemma:equalanglestransitive
EAFAGSAG lemma:equalanglestransitive
qedcase
case 5:BEGHA
BEAHG axiom:betweennesssymmetry
RAAHG lemma:ray4
EAFAHFAH lemma:equalanglesreflexive
COSAH assumption
COSHA lemma:collinearorder
NCSAH reductio
EASAHSAH lemma:equalanglesreflexive
EAFAHFAG lemma:equalangleshelper
EASAHSAG lemma:equalangleshelper
EAFAGFAH lemma:equalanglessymmetric
EAFAGSAH lemma:equalanglestransitive
EAFAGSAG lemma:equalanglestransitive
qedcase
case 6:BEGAH
BEHAG axiom:betweennesssymmetry
RAAFF
SUHAFFG defn:supplement
SUHASSG defn:supplement
EAFAHSAH
EAHAFHAS lemma:equalanglesflip
EAFAGSAG lemma:supplements
qedcase
EAFAGSAG cases
qedcase
EAFAGSAG cases
EASAGFAG lemma:equalanglessymmetric
EAFAGDCE
EASAGDCE lemma:equalanglestransitive
OSQJTP
RAHQS
RAHSQ lemma:ray5
COJTH lemma:collinearorder
OSSJTP lemma:9.5
ANBESMP+COJTM+NCJTS defn:oppositeside
BESMP
COJTM
NCJTS
COABJ
COJTA
COJTB
NEJT
COTAB lemma:collinear4
COABT lemma:collinearorder
COBAT lemma:collinearorder
COAJT lemma:collinear4
COJTA lemma:collinearorder
COBJT lemma:collinear4
COJTB lemma:collinearorder
NEJT
COABM lemma:collinear5
COABS assumption
COABJ
COABT
COJTS lemma:collinear5
NCABS reductio
OSSABP defn:oppositeside
ANRAABG+EASAGDCE+OSSABP
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists