Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/Prop16.prf

TRABC
BEBCD
NCABC   defn:triangle
EQAC assumption
 COABC defn:collinear
NEAC reductio
EQBC  assumption
 COABC defn:collinear
NEBC  reductio
NECB  lemma:inequalitysymmetric
ANBEAEC+EEEAEC  proposition:10
BEAEC
EQBE    assumption
 BEABC   cn:equalitysub
 COABC   defn:collinear
NEBE  reductio
NEEB  lemma:inequalitysymmetric
ANBEBEF+EEEFEB  lemma:extension
EEEFEB
EQAC  assumption
 COABC  defn:collinear
 NCABC
NEAC  reductio
NECA  lemma:inequalitysymmetric
NEEC  lemma:betweennotequal
ANBEACG+EECGEC lemma:extension
COBEA  assumption
 COAEC  defn:collinear
 COEAB  lemma:collinearorder
 COEAC  lemma:collinearorder
 NEAE   lemma:betweennotequal
 NEEA   lemma:inequalitysymmetric
 COABC  lemma:collinear4
NCBEA  reductio
BEAEC
BEBEF
EABEACEF   proposition:15
COAEB     assumption
 COBEA    lemma:collinearorder
NCAEB  reductio
EAAEBBEA  lemma:ABCequalsCBA
EAAEBCEF  lemma:equalanglestransitive
EEBEFE    lemma:doublereverse
EEEBEF   lemma:congruenceflip
COEAB    assumption
 COBEA   lemma:collinearorder
NCEAB    reductio
EEEAEC
EEEBEF
EAAEBCEF
ANEEABCF+EAEABECF+EAEBAEFC proposition:04
EAEABECF
COBAE  assumption
 COEAB  lemma:collinearorder
NCBAE  reductio
RAACE    lemma:ray4
EQBB    cn:equalityreflexive
NEAB  lemma:angledistinct
NEBA  lemma:inequalitysymmetric
RAABB   lemma:ray4
COBAC   assumption
 COABC  lemma:collinearorder
NCBAC  reductio
EABACBAC  lemma:equalanglesreflexive
EABACBAE  lemma:equalangleshelper
EABAEEAB  lemma:ABCequalsCBA
EABACEAB  lemma:equalanglestransitive
EABACECF  lemma:equalanglestransitive
BECEA     axiom:betweennesssymmetry
NECE  lemma:betweennotequal
RACEA      lemma:ray4
EQFF      cn:equalityreflexive
COECF    assumption
 COBEF   defn:collinear
 COFEB   lemma:collinearorder
 COFEC   lemma:collinearorder
 NEEF    lemma:betweennotequal
 NEFE    lemma:inequalitysymmetric
 COEBC  lemma:collinear4
 COAEC  defn:collinear
 COECB  lemma:collinearorder
 COECA  lemma:collinearorder
 NEEC   lemma:betweennotequal
 COCBA  lemma:collinear4
 COABC  lemma:collinearorder
NCECF    reductio
EQCF assumption
 COECF defn:collinear
NECF reductio
RACFF      lemma:ray4
EAECFECF  lemma:equalanglesreflexive
EAECFACF  lemma:equalangleshelper
EABACACF  lemma:equalanglestransitive
BEBCD
BEDCB axiom:betweennesssymmetry
BEBEF
BEFEB  axiom:betweennesssymmetry
CODBF  assumption
 COFBD  lemma:collinearorder
 COBEF defn:collinear
 COFBE  lemma:collinearorder
 NEBF  lemma:betweennotequal
 NEFB  lemma:inequalitysymmetric
 COBDE lemma:collinear4
 CODBE  lemma:collinearorder
 COBCD defn:collinear
 CODBC lemma:collinearorder
 NEBD  lemma:betweennotequal
 NEDB  lemma:inequalitysymmetric
 COBEC  lemma:collinear4
 COECB lemma:collinearorder
 COAEC defn:collinear
 COECA lemma:collinearorder
 NEEC  lemma:betweennotequal
 COCBA lemma:collinear4
 COABC lemma:collinearorder
 NCABC
NCDBF reductio
ANBEDHE+BEFHC postulate:Pasch-inner
BEDHE
BEFHC
BECHF   axiom:betweennesssymmetry
RACFH   lemma:ray4
EQAA    cn:equalityreflexive
RACAA   lemma:ray4
EABACACH  lemma:equalangleshelper
EABACACF  lemma:equalangleshelper
BEEHD   axiom:betweennesssymmetry
RACAE   lemma:ray5
EQDD    cn:equalityreflexive
NEDC  lemma:betweennotequal
NECD  lemma:inequalitysymmetric
RACDD   lemma:ray4
EABACACH  lemma:equalanglestransitive
AOBACACD  defn:anglelessthan
NEBC    lemma:betweennotequal
ANBEBeC+EEeBeC  proposition:10
BEBeC
COBeC   defn:collinear
EQAe    assumption
 BEBAC   cn:equalitysub
 COBAC   defn:collinear
NEAe  reductio
NEeA  lemma:inequalitysymmetric
ANBEAef+EEefeA  lemma:extension
EEefeA
EQBC  assumption
 COBAC  defn:collinear
 NCBAC
NEBC  reductio
COAeB  assumption
 COBeC  defn:collinear
 COeBA  lemma:collinearorder
 COeBC  lemma:collinearorder
 NEBe   lemma:betweennotequal
 NEeB   lemma:inequalitysymmetric
 COBAC  lemma:collinear4
NCAeB  reductio
BEBeC
BEAef
EAAeBCef   proposition:15
COBeA     assumption
 COAeB    lemma:collinearorder
NCBeA  reductio
EABeAAeB  lemma:ABCequalsCBA
EABeACef  lemma:equalanglestransitive
EEAefe   lemma:doublereverse
EEeAef   lemma:congruenceflip
COeBA    assumption
 COAeB   lemma:collinearorder
NCeBA    reductio
EEeBeC
EEeAef
EABeACef
ANEEBACf+EAeBAeCf+EAeABefC  proposition:04
EAeBAeCf
COABe  assumption
 COeBA  lemma:collinearorder
NCABe  reductio
RABCe    lemma:ray4
RABAA   lemma:ray4
COABC   assumption
 COBAC  lemma:collinearorder
NCABC  reductio
EAABCABC lemma:equalanglesreflexive
EAABCABe  lemma:equalangleshelper
EAABeeBA lemma:ABCequalsCBA
EAABCeBA lemma:equalanglestransitive
EAABCeCf  lemma:equalanglestransitive
BECeB     axiom:betweennesssymmetry
NECe   lemma:betweennotequal
RACeB      lemma:ray4
EQff       cn:equalityreflexive
NCeCf  lemma:equalanglesNC
EQCf  assumption
 COeCf  defn:collinear
NECf   reductio
RACff      lemma:ray4
COeCf    assumption
 COAef   defn:collinear
 COfeA   lemma:collinearorder
 COfeC   lemma:collinearorder
 NEef    lemma:betweennotequal
 NEfe    lemma:inequalitysymmetric
 COeAC  lemma:collinear4
 COeCA  lemma:collinearorder
 COeCB  lemma:collinearorder
 NEeC   lemma:betweennotequal
 COCAB  lemma:collinear4
 COBAC  lemma:collinearorder
NCeCf    reductio
EAeCfeCf lemma:equalanglesreflexive
EAeCfBCf lemma:equalangleshelper
EAABCBCf  lemma:equalanglestransitive
BEACG
BEGCA axiom:betweennesssymmetry
NEGC  lemma:betweennotequal
NECG  lemma:inequalitysymmetric
BEAef
BEfeA  axiom:betweennesssymmetry
COGAf  assumption
 COfAG  lemma:collinearorder
 COAef defn:collinear
 COfAe  lemma:collinearorder
 NEAf  lemma:betweennotequal
 NEfA  lemma:inequalitysymmetric
 COAGe lemma:collinear4
 COGAe  lemma:collinearorder
 COACG defn:collinear
 COGAC lemma:collinearorder
 NEAG  lemma:betweennotequal
 NEGA  lemma:inequalitysymmetric
 COAeC  lemma:collinear4
 COeCA lemma:collinearorder
 COBeC  defn:collinear
 COeCB  lemma:collinearorder
 NEeC  lemma:betweennotequal
 COCAB lemma:collinear4
 COABC lemma:collinearorder
 NCABC
NCGAf reductio
ANBEGhe+BEfhC postulate:Pasch-inner
BEGhe
BEfhC
BEChf   axiom:betweennesssymmetry
NEhC   lemma:betweennotequal
NECh   lemma:inequalitysymmetric
RAChf   lemma:ray4
RACfh   lemma:ray5
RACBB   lemma:ray4
EAABCBCh  lemma:equalangleshelper
EAABCBCf  lemma:equalangleshelper
BEehG   axiom:betweennesssymmetry
BECeB   axiom:betweennesssymmetry
RACeB   lemma:ray4
RACBe   lemma:ray5
EQGG    cn:equalityreflexive
RACGG   lemma:ray4
EAABCBCh  lemma:equalanglestransitive
AOABCBCG defn:anglelessthan
COGCB  assumption
 COACG  defn:collinear
 COGCA  lemma:collinearorder
 NECG   lemma:betweennotequal
 NEGC   lemma:inequalitysymmetric
 COCBA  lemma:collinear4
 COABC  lemma:collinearorder
NCGCB  reductio
EAGCBDCA  proposition:15
COACD   assumption
 CODCA  lemma:collinearorder
 COBCD   defn:collinear
 CODCB   lemma:collinearorder
 NECD    lemma:betweennotequal
 NEDC    lemma:inequalitysymmetric
 COCAB   lemma:collinear4
 COABC   lemma:collinearorder
NCACD     reductio
EAGCBBCG  lemma:ABCequalsCBA
AOABCGCB  lemma:angleorderrespectscongruence
CODCA   assumption
 COACD   lemma:collinearorder
NCDCA    reductio
EADCAACD  lemma:ABCequalsCBA
EAGCBACD  lemma:equalanglestransitive
EAACDGCB  lemma:equalanglessymmetric
AOABCGCB
AOABCACD  lemma:angleorderrespectscongruence
COCBA  assumption
 COABC  lemma:collinearorder
NCCBA   reductio
EACBAABC  lemma:ABCequalsCBA
AOCBAACD  lemma:angleorderrespectscongruence2
ANAOBACACD+AOCBAACD



 

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists