Sindbad~EG File Manager
NEAB
EECADA
EECBDB
SSCDAB
NCABC defn:sameside
PACFABF proposition:12
ANCOCFF+COABF+COABH+RRHFC defn:perpat
COABF
COABH
EQCF assumption
COABC cn:equalitysub
NECF reductio
NECF
NEFC lemma:inequalitysymmetric
ANBECFE+EEFEFC lemma:extension
BECFE
EEFEFC
cases EEACAE:EQAF|NEAF
case 1:EQAF
EEFEFC
EEAEAC cn:equalitysub
EEACAE lemma:congruencesymmetric
qedcase
case 2:NEAF
COABF
COABH
NEBA lemma:inequalitysymmetric
COBAF lemma:collinearorder
COBAH lemma:collinearorder
COAFH lemma:collinear4
COHFA lemma:collinearorder
RRHFC
RRAFC lemma:collinearright
RRCFA lemma:8.2
ANBECFP+EECFPF+EECAPA+NEFA defn:rightangle
EECAPA
BECFE
BECFP
EECFPF
EEFEFC
EEFECF lemma:congruenceflip
EEFEPF lemma:congruencetransitive
EEFEFP lemma:congruenceflip
EQEP lemma:extensionunique
EECAEA cn:equalitysub
EEACAE lemma:congruenceflip
qedcase
EEACAE cases
cases EEBCBE:EQBF|NEBF
case 1:EQBF
EEFEFC
EEBEBC cn:equalitysub
EEBCBE lemma:congruencesymmetric
qedcase
case 2:NEBF
COABF
COBAF lemma:collinearorder
COBAH lemma:collinearorder
NEAB
COABF lemma:collinearorder
COABH lemma:collinearorder
COBFH lemma:collinear4
COHFB lemma:collinearorder
RRHFC
RRBFC lemma:collinearright
RRCFB lemma:8.2
ANBECFP+EECFPF+EECBPB+NEFB defn:rightangle
EECBPB
BECFE
BECFP
EECFPF
EEFEFC
EEFECF lemma:congruenceflip
EEFEPF lemma:congruencetransitive
EEFEFP lemma:congruenceflip
EQEP lemma:extensionunique
EECBEB cn:equalitysub
EEBCBE lemma:congruenceflip
qedcase
EEBCBE cases
OSCABE defn:oppositeside
SSDCAB lemma:samesidesymmetric
OSDABE lemma:planeseparation
ANBEDGE+COABG+NCABD defn:oppositeside
BEDGE
COABG
EEACAE
EECADA
EEEACA lemma:doublereverse
EEAECA lemma:congruenceflip
EEAEDA lemma:congruencetransitive
EEAEAD lemma:congruenceflip
EEADAE lemma:congruencesymmetric
EEBDBC lemma:doublereverse
EEBDBE lemma:congruencetransitive
EEAGAG cn:congruencereflexive
EEGBGB cn:congruencereflexive
COABG
OREQAB|EQAG|EQBG|BEBAG|BEABG|BEAGB defn:collinear
cases EEGDGE:EQAB|EQAG|EQBG|BEBAG|BEABG|BEAGB
case 1:EQAB
NOEEGDGE assumption
NEAB
EEGDGE reductio
qedcase
case 2:EQAG
EEADAE lemma:congruencesymmetric
EEGDGE cn:equalitysub
qedcase
case 3:EQBG
EEBDBE
EEGDGE cn:equalitysub
qedcase
case 4:BEBAG
EEBABA cn:congruencereflexive
EEAGAG cn:congruencereflexive
EEBDBE
EEADAE lemma:congruencesymmetric
EEDGEG axiom:5-line
EEGDGE lemma:congruenceflip
qedcase
case 4:BEABG
EEABAB cn:congruencereflexive
EEBGBG cn:congruencereflexive
EEADAE
EEBDBE
EEDGEG axiom:5-line
EEGDGE lemma:congruenceflip
qedcase
case 5:BEAGB
EEAGAG cn:congruencereflexive
EEGBGB cn:congruencereflexive
EEADAE
EEBDBE
EEGDGE lemma:interior5
qedcase
EEGDGE cases
EEBDBE
EEDAEA lemma:congruenceflip
cases EQFG:EQAG|NEAG
case 1:EQAG
BEEGD axiom:betweennesssymmetry
EEEGDG lemma:doublereverse
EEEBDB lemma:doublereverse
EQGB assumption
EQAB cn:equalitysub
NEGB reductio
RREGB defn:rightangle
BEEFC axiom:betweennesssymmetry
EEEFCF lemma:doublereverse
EEEBCB lemma:doublereverse
EQFB assumption
EEAEAD lemma:congruenceflip
NEBA lemma:inequalitysymmetric
BEEAD cn:equalitysub
EEEADA lemma:congruenceflip
EEEBDB
NEAB
RREAB defn:rightangle
RRBAE lemma:8.2
BEEBC cn:equalitysub
EEEBCB
EEEACA
NEBA
RREBA defn:rightangle
ANBEBAJ+EEAJAB lemma:extension
BEBAJ
RABAJ lemma:ray4
RREBJ lemma:8.3
RRJBE lemma:8.2
COABJ defn:collinear
RREAB
COBAJ lemma:collinearorder
RRBAE lemma:8.2
NEAJ lemma:betweennotequal
NEJA lemma:inequalitysymmetric
RRJAE lemma:collinearright
RRJBE
COJAB lemma:collinearorder
EQAB lemma:droppedperpendicularunique
NEAB
NEFB reductio
RREFB defn:rightangle
RRBGE lemma:8.2
RRBFE lemma:8.2
COABG
COABF
NEAB
COBGF lemma:collinear4
EQGF lemma:droppedperpendicularunique
EQFG lemma:equalitysymmetric
qedcase
case 2:NEAG
cases EQFG:EQAF|NEAF
case 1:EQAF
NEFB cn:equalitysub
EEEFCF lemma:congruenceflip
EEEBCB lemma:doublereverse
BEEFC axiom:betweennesssymmetry
RREFB defn:rightangle
RRBFE lemma:8.2
EQBG assumption
EEBEBD lemma:congruencesymmetric
BEEGD axiom:betweennesssymmetry
BEEBD cn:equalitysub
EEEBDB lemma:congruenceflip
EEEADA lemma:congruencesymmetric
NEBA lemma:inequalitysymmetric
RREBA defn:rightangle
RRABE lemma:8.2
BEEAC cn:equalitysub
EEEACA
EEEBCB
RREAB defn:rightangle
ANBEABK+EEBKBA lemma:extension
BEABK
RAABK lemma:ray4
RREAK lemma:8.3
RRKAE lemma:8.2
COBAK defn:collinear
RREBA
COABK lemma:collinearorder
RRABE lemma:8.2
NEBK lemma:betweennotequal
NEKB lemma:inequalitysymmetric
RRKBE lemma:collinearright
RRKAE
COKBA lemma:collinearorder
EQBA lemma:droppedperpendicularunique
NEAB
NEBA lemma:inequalitysymmetric
NEBG reductio
NEGB lemma:inequalitysymmetric
EEEGDG lemma:doublereverse
EEEBDB lemma:doublereverse
BEEGD axiom:betweennesssymmetry
RREGB defn:rightangle
RRBGE lemma:8.2
COABG
COFBG cn:equalitysub
COBGF lemma:collinearorder
EQGF lemma:droppedperpendicularunique
EQFG lemma:equalitysymmetric
qedcase
case 2:NEAF
NEFA lemma:inequalitysymmetric
EEEACA
EEEFCF lemma:doublereverse
BEEFC axiom:betweennesssymmetry
RREFA defn:rightangle
RRAFE lemma:8.2
BEEGD axiom:betweennesssymmetry
EEEGDG lemma:doublereverse
EEEADA lemma:congruencesymmetric
NEGA lemma:inequalitysymmetric
RREGA defn:rightangle
RRAGE lemma:8.2
COABF
COABG
COBAF lemma:collinearorder
COBAG lemma:collinearorder
NEBA lemma:inequalitysymmetric
COAFG lemma:collinear4
EQFG lemma:droppedperpendicularunique
qedcase
EQFG cases
qedcase
EQFG cases
EEBFBF cn:congruencereflexive
EEAFAG cn:equalitysub
COAFB lemma:collinearorder
NEAB
EEAFAG
EEFBFB cn:congruencereflexive
EEFBGB cn:equalitysub
EEACAD lemma:congruenceflip
EEBCBD lemma:congruenceflip
EEABAB cn:congruencereflexive
EEFCGD lemma:fiveline
EEFCFD cn:equalitysub
BEEFC axiom:betweennesssymmetry
BEEGD axiom:betweennesssymmetry
BEEFD cn:equalitysub
RAFDC defn:ray
EQDD cn:equalityreflexive
EQFD assumption
COABF lemma:collinearorder
COABD cn:equalitysub
NCABD
NEFD reductio
RAFDD lemma:ray4
EQCD lemma:layoffunique
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists