Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/FilesToPost/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/FilesToPost/Prop47B.prf

TRABC
RRBAC
SQABFG
OSGBAC
SQBCED
OSDCBA
ANPGBMLD+BEBMC+PGMCEL+BEDLE+BELMA+RRDLA  proposition:47A
PGBMLD
BEBMC
PGMCEL
BEDLE
BELMA
RRDLA
ANBEDNA+COCBN+NCCBD  defn:oppositeside
RRGAB  defn:square
BEGAC  lemma:righttogether
RRABF  defn:square
RRFBA  lemma:8.2
RRDBC  defn:square
NCABC  defn:triangle
PGABFG  lemma:squareparallelogram
PRABFG  defn:parallelogram
PRABGF  lemma:parallelflip
TPABGF  lemma:paralleldef2B
SSGFAB  defn:tarski_parallel
SSFGAB  lemma:samesidesymmetric
OSGABC  lemma:oppositesideflip
OSFABC  lemma:planeseparation
ANBEFaC+COABa+NCABF defn:oppositeside
BEFaC
COABa
COBAa  lemma:collinearorder
PRAGBF  defn:parallelogram
PRAGFB  lemma:parallelflip
COGAC  defn:collinear
COAGC  lemma:collinearorder
NEGC  lemma:betweennotequal
NECG  lemma:inequalitysymmetric
PRFBAG lemma:parallelsymmetric
PRFBCG  lemma:collinearparallel
PRFBGC  lemma:parallelflip
NOMEFBGC  defn:parallel
NEAC  lemma:NCdistinct
NCABF  lemma:parallelNC
NEFA  lemma:NCdistinct
NEFB  lemma:NCdistinct
EQBB  cn:equalityreflexive
COFBB defn:collinear
ANCOFBB+COGAC+NEFB+NEGC+NEFA+NEAC+NOMEFBGC+BEFaC+COBAa
BEBaA   lemma:collinearbetween
NEBa  lemma:betweennotequal
RABaA  lemma:ray4
NEBF  lemma:inequalitysymmetric
EQFF  cn:equalityreflexive
RABFF  lemma:ray4
NCABF  lemma:parallelNC
NCFBA  lemma:NCorder
EAFBAFBA  lemma:equalanglesreflexive
RABAa  lemma:ray5
EAFBAFBa  lemma:equalangleshelper
NEBC  lemma:NCdistinct
EQCC  cn:equalityreflexive
RABCC   lemma:ray4
EAABCABC  lemma:equalanglesreflexive
EAABCaBC  lemma:equalangleshelper
ASFBAABCFBC  defn:anglesum
OSDCBA  
ANBEDcA+COCBc+NCCBD defn:oppositeside
BEDcA
COCBc
NCCBD
SQBCED  
PGBCED  lemma:squareparallelogram
PRBDCE  defn:parallelogram
PRCEBD  lemma:parallelsymmetric
PRCEDB  lemma:parallelflip
COBCc   lemma:collinearorder
COBMC  defn:collinear
COCBM  lemma:collinearorder
COCBc  lemma:collinearorder
NECB  lemma:NCdistinct
COBMc  lemma:collinear4
PGBMLD
PRBDML  defn:parallelogram
COLMA  defn:collinear
COMLA  lemma:collinearorder
NELA lemma:betweennotequal
NEAL  lemma:inequalitysymmetric
PRBDAL  lemma:collinearparallel
EQBB  cn:equalityreflexive
PRDBLA  lemma:parallelflip
NOMEDBLA  defn:parallel 
NCBDL  lemma:parallelNC
NEDB   lemma:NCdistinct
NEMA  lemma:betweennotequal
NELM  lemma:betweennotequal
EQDD  cn:equalityreflexive
CODBB defn:collinear
ANCODBB+COLMA+NEDB+NELM+NEDB+NEMA+NOMEDBLA+BEDcA+COBMc
BEBcM   lemma:collinearbetween
BEBcC   lemma:3.6b
NCDBA lemma:parallelNC
EQBc   assumption
 CODBc  defn:collinear
 CODcA  defn:collinear
 COcDB lemma:collinearorder
 COcDA  lemma:collinearorder
 NEDc  lemma:betweennotequal
 NEcD  lemma:inequalitysymmetric
 CODBA lemma:collinear4
NEBc  reductio
RABcC   lemma:ray4
RABCc   lemma:ray5
NCCBA  lemma:NCorder
EACBACBA lemma:equalanglesreflexive
EQAA   cn:equalityreflexive
NEBA  lemma:NCdistinct
RABAA   lemma:ray4
EACBAcBA  lemma:equalangleshelper
NCCDB  lemma:parallelNC
NCDBC  lemma:NCorder
EADBCDBC  lemma:equalanglesreflexive
NEBD  lemma:inequalitysymmetric
RABDD  lemma:ray4
EADBCDBc  lemma:equalangleshelper
ASDBCCBADBA  defn:anglesum
ASFBAABCFBC
ASDBCCBADBA
EAFBADBC   lemma:Euclid4
EAABCCBA   lemma:ABCequalsCBA
EAFBCDBA   lemma:angleaddition
EADBAFBC   lemma:equalanglessymmetric
COCBF  assumption
 RRFBA
 COFBC  lemma:collinearorder
 RRCBA lemma:collinearright
 NORRCBA  lemma:8.7
NCCBF reductio
NCFBC       lemma:NCorder
EAFBCCBF   lemma:ABCequalsCBA
EADBACBF  lemma:equalanglestransitive
EEABBF  defn:square
EEABFB  lemma:congruenceflip
EEFBAB  lemma:congruencesymmetric
EEBFBA  lemma:congruenceflip
EEBABF  lemma:congruencesymmetric
EEBCDB  defn:square
EEDBBC  lemma:congruencesymmetric
EEBDBC  lemma:congruenceflip
ANEEDACF+EABDABCF+EABADBFC  proposition:04
EEDACF
EEADFC    lemma:congruenceflip
EABADBFC
EABFCBAD  lemma:equalanglessymmetric
NCBAD  lemma:equalanglesNC
NCABD  lemma:NCorder
TRABD  defn:triangle
ANEEABFB+EEADFC+EEBDBC+TRABD
TCABDFBC   defn:trianglecongruence
ETABDFBC   axiom:congruentequal
PGBMLD
PRBMLD  defn:parallelogram
PRBDML  defn:parallelogram
PRMLBD  lemma:parallelsymmetric
PRMBDL  lemma:parallelflip
PGMBDL  defn:parallelogram
COMLA     lemma:collinearorder
ETMBDABD   proposition:41
PGABFG   lemma:squareparallelogram
PGBAGF  lemma:PGflip
COGAC  defn:collinear
COAGC  lemma:collinearorder
ETABFCBF  proposition:41
ETABFFBC  axiom:ETpermutation
ETFBCABD  axiom:ETsymmetric
ETABFABD  axiom:ETtransitive
ETABDMBD  axiom:ETsymmetric
ETABFMBD  axiom:ETtransitive
TCABFFGA  proposition:34
ETABFFGA axiom:congruentequal
PGBMLD  lemma:PGflip
TCMBDDLM  proposition:34
ETMBDDLM  axiom:congruentequal
ETFGAABF  axiom:ETsymmetric
ETFGAABD  axiom:ETtransitive
ETFGAMBD  axiom:ETtransitive
ETFGADLM  axiom:ETtransitive
ETFGADML  axiom:ETpermutation
ETDMLFGA  axiom:ETsymmetric
ETDMLFAG  axiom:ETpermutation
ETFAGDML axiom:ETsymmetric
ETABFDMB  axiom:ETpermutation
ETDMBABF  axiom:ETsymmetric
ETDMBFAB  axiom:ETpermutation
ETFABDMB  axiom:ETsymmetric
ANMIAmF+MIBmG  lemma:diagonalsbisect
MIAmF
MIBmG
BEAmF  defn:midpoint
BEBmG  defn:midpoint
BEFmA  axiom:betweennesssymmetry
ANMIBnL+MIMnD  lemma:diagonalsbisect
MIBnL
MIMnD
BEBnL  defn:midpoint
BEMnD  defn:midpoint
BEDnM  axiom:betweennesssymmetry
COMnD  defn:collinear
CODMn  lemma:collinearorder
NCBMD  lemma:parallelNC
NCDMB  lemma:NCorder
EFFBAGDBML  axiom:paste3
EFFBAGBMLD  axiom:EFpermutation
EFBMLDFBAG   axiom:EFsymmetric
EFBMLDABFG   axiom:EFpermutation
EFABFGBMLD   axiom:EFsymmetric
ANPGBMLD+BEBMC+PGMCEL+BEDLE+BELMA+RRDLA+EFABFGBMLD 

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists