Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/FilesToPost/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/FilesToPost/Prop46.prf

NEAB
NCABR
NEBA  lemma:inequalitysymmetric
ANBEBAF+EEAFAB  lemma:extension
BEBAF
NCBAR  lemma:NCorder
COBAF defn:collinear
EQBB  cn:equalityreflexive
COBAB  defn:collinear
NEBF  lemma:betweennotequal
NCBFR  lemma:NChelper
ANRRBAC+OSCBFR  proposition:11B
OSCBFR
NCBFC  defn:oppositeside
COBFA  lemma:collinearorder
COBFB  defn:collinear
NCBAC  lemma:NChelper
NEAC  lemma:NCdistinct
ANRAACD+EEADAB  lemma:layoff
RAACD
RAADC  lemma:ray5
EQAA  cn:equalityreflexive
COABA  defn:collinear
ANBECqR+COBFq+NCBFC  defn:oppositeside
BECqR
COBFq  
NCBFC
COBFA
COFBq  lemma:collinearorder
EQBB  cn:equalityreflexive
NCABC  lemma:NChelper
COABF  lemma:collinearorder
COFBA  lemma:collinearorder
NEBF  lemma:betweennotequal
NEFB  lemma:inequalitysymmetric
COBAq  lemma:collinear4
COABq  lemma:collinearorder
OSCABR  defn:oppositeside
OSDABR  lemma:9.5
NCCAB  lemma:NCorder
EQAA  cn:equalityreflexive
COCAA  defn:collinear
COACD lemma:rayimpliescollinear
COCAD  lemma:collinearorder
NEAD  lemma:ray2
NCCAB  lemma:NCorder
ANNCCAB+COCAA+COCAD+NEAD
NCADB  lemma:NChelper
NCABD  lemma:NCorder
BEFAB  axiom:betweennesssymmetry
COABF
COABB  defn:collinear
NEAB
NCFBD  lemma:NChelper
ANBEGDe+EAGDADAB+PRGeFB+BEGMB+BEDMA  proposition:31short
BEGDe
PRGeFB
BEGMB
BEDMA
PRGeAB  lemma:collinearparallel
PRABGe lemma:parallelsymmetric
COGDe  defn:collinear
COGeD  lemma:collinearorder
ANPGDEBA+COGeE  lemma:triangletoparallelogram
COGeE
RRBAC
RRCAB  lemma:8.2 
COCAD  
NEDA    lemma:inequalitysymmetric
RRDAB   lemma:collinearright
RRBAD   lemma:8.2
EAGDADAB  
RRGDA   lemma:equaltorightisright
ANBEGDp+EEGDpD+EEGApA+NEDA defn:rightangle
BEGDp
EEGDpD
EEGApA
NEDA
BEpDG axiom:betweennesssymmetry
EEpDGD lemma:congruencesymmetric
EEpAGA lemma:congruencesymmetric
RRpDA  defn:rightangle
PGDEBA
PRDAEB  defn:parallelogram
TPDAEB  lemma:paralleldef2B
SSEBDA  defn:tarski_parallel
EQDD   cn:equalityreflexive
CODAD  defn:collinear
NCDAB  lemma:NCorder
BEBMG  axiom:betweennesssymmetry
CODMA  defn:collinear
CODAM  lemma:collinearorder
OSBDAG  defn:oppositeside
OSEDAG  lemma:planeseparation
NCDAE  defn:oppositeside
OSGDAE   lemma:oppositesidesymmetric
NCDAG  defn:oppositeside
ANBEEdG+CODAd+NCDAE defn:oppositeside
BEEdG
CODAd
NCDAE
NEEG  lemma:betweennotequal
NEGE lemma:inequalitysymmetric
NEGD  lemma:NCdistinct
NEDE lemma:NCdistinct
SSEGDA  assumption
 NOOSEDAG lemma:samenotopposite
NOSSEGDA reductio
BEDGE assumption
 CODAD
 BEGDe
 BEEGD axiom:betweennesssymmetry
 BEEDe lemma:3.7a
 SSEGDA defn:sameside
NOBEDGE reductio
BEGED assumption
 BEGDe
 BEEDe  lemma:3.6a
 SSEGDA defn:sameside
NOBEGED reductio
COeGD  lemma:collinearorder
COeGE  lemma:collinearorder
NCGeF  lemma:parallelNC
NEGe   lemma:NCdistinct
NEeG  lemma:inequalitysymmetric
COGDE  lemma:collinear4
OREQGD|EQGE|EQDE|BEDGE|BEGDE|BEGED  defn:collinear
cases BEGDE:EQGD|EQGE|EQDE|BEDGE|BEGDE|BEGED
 case 1:EQGD
  NOBEGDE assumption
   NEGD
  BEGDE reductio
 qedcase
 case 2:EQGE
  NOBEGDE assumption
   NEGE
  BEGDE reductio
 qedcase
 case 3:EQDE
  NOBEGDE assumption
   NEDE
  BEGDE reductio
 qedcase
 case 4:BEDGE
  NOBEGDE assumption
   NOBEDGE
  BEGDE reductio
 qedcase
 case 5:BEGDE
 qedcase
 case 6:BEGED
  NOBEGDE assumption
   NOBEGED
  BEGDE reductio
 qedcase
BEGDE cases
COGDE  defn:collinear
NEED  lemma:inequalitysymmetric
RREDA  lemma:collinearright
PGDEBA
ANEEDAEB+EEDEAB+EAEDAABE+EADABBED+TCEDAABE  proposition:34
EEDAEB
EEDEAB
EAEDAABE
EADABBED
EEABDE  lemma:congruencesymmetric
EEABED lemma:congruenceflip
EEADAB
EEABAD  lemma:congruencesymmetric
EEADEB  lemma:congruenceflip
EEABEB  lemma:congruencetransitive
EEABBE lemma:congruenceflip
EEABDA  lemma:congruenceflip
RRDAB  
RREDA
EABEDDAB  lemma:equalanglessymmetric
EAABEEDA  lemma:equalanglessymmetric
RRBED  lemma:equaltorightisright
RRABE   lemma:equaltorightisright 
ANEEABED+EEABBE+EEABDA+RRDAB+RRABE+RRBED+RREDA  
SQABED  defn:square
PGBADE  lemma:PGsymmetric
PGABED   lemma:PGflip
ANSQABED+OSDABR+PGABED

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists