Sindbad~EG File Manager
TRABC
TRDBC
SSADBC
ETABCDBC
NEAD
SSDABC lemma:samesidesymmetric
SSADCB lemma:samesideflip
SSDACB lemma:samesidesymmetric
NCABC defn:triangle
NCDBC defn:triangle
NEAB lemma:NCdistinct
NEBD lemma:NCdistinct
NEBA lemma:inequalitysymmetric
NEBC lemma:NCdistinct
NECA lemma:NCdistinct
NECB lemma:NCdistinct
NECD lemma:NCdistinct
EQAA cn:equalityreflexive
EQCC cn:equalityreflexive
EQBB cn:equalityreflexive
EQDD cn:equalityreflexive
RABCC lemma:ray4
RABAA lemma:ray4
RABDD lemma:ray4
RACBB lemma:ray4
RACAA lemma:ray4
RACDD lemma:ray4
NOPRADBC assumption
AOCBDCBA assumption
ANBEAMC+RABDM lemma:crossbar2
BEAMC
RABDM
PRADBC proposition:39A
NOAOCBDCBA reductio
AOCBACBD assumption
ANBEDMC+RABAM lemma:crossbar2
BEDMC
RABAM
ETDBCABC axiom:ETsymmetric
PRDABC proposition:39A
PRADBC lemma:parallelflip
NOAOCBACBD reductio
NOEACBDCBA assumption
NCCBA lemma:NCorder
NCCBD lemma:NCorder
AOCBDCBA lemma:angletrichotomy2
EACBDCBA reductio
NCACB lemma:NCorder
TRACB defn:triangle
NCDCB lemma:NCorder
TRDCB defn:triangle
SSADCB lemma:samesideflip
ETABCDCB axiom:ETpermutation
ETDCBABC axiom:ETsymmetric
ETDCBACB axiom:ETpermutation
ETACBDCB axiom:ETsymmetric
AOBCDBCA assumption
ANBEAMB+RACDM lemma:crossbar2
BEAMB
RACDM
TRACB
PRADCB proposition:39A
PRADBC lemma:parallelflip
NOAOBCDBCA reductio
AOBCABCD assumption
ANBEDMB+RACAM lemma:crossbar2
BEDMB
RACAM
ETDCBACB axiom:ETsymmetric
PRDACB proposition:39A
PRADBC lemma:parallelflip
NOAOBCABCD reductio
NOEABCDBCA assumption
NCBCA lemma:NCorder
NCBCD lemma:NCorder
AOBCDBCA lemma:angletrichotomy2
EABCDBCA reductio
EABCABCD lemma:equalanglessymmetric
EEBCBC cn:congruencereflexive
EADBCABC lemma:equalanglesflip
EAABCDBC lemma:equalanglessymmetric
ANEEABDB+EEACDC+EABACBDC proposition:26A
EEABDB
EEACDC
SSADBC
NEBC lemma:NCdistinct
EQAD proposition:07
NEAD
PRADBC reductio
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists