Sindbad~EG File Manager
PRABEF
PRCDEF
NCABC
BEGKH
COAGB
NEAG
COEHF
NEEH
COCKD
NECK
OSAGHF
OSCKHF
PREFCD lemma:parallelsymmetric
NEGH lemma:betweennotequal
NEHG lemma:inequalitysymmetric
NEKH lemma:betweennotequal
NEHK lemma:inequalitysymmetric
ANBEHGP+EEGPGH lemma:extension
ANBEKHQ+EEHQKH lemma:extension
BEHGP
BEKHQ
BEGHQ lemma:3.7a
BEPGH axiom:betweennesssymmetry
EAAGHGHF proposition:29
BEPKH lemma:3.5b
EACKHKHF proposition:29
BEHKG axiom:betweennesssymmetry
RAHKG lemma:ray4
RAHGK lemma:ray5
EQFF cn:equalityreflexive
NEHF lemma:betweennotequal
RAHFF lemma:ray4
EAAGHKHF lemma:equalangleshelper
EAKHFAGH lemma:equalanglessymmetric
EACKHAGH lemma:equalanglestransitive
NEGH lemma:betweennotequal
RAGHK lemma:ray4
NEAG lemma:betweennotequal
NEGA lemma:inequalitysymmetric
EQAA cn:equalityreflexive
RAGAA lemma:ray4
EACKHAGK lemma:equalangleshelper
EAHKCKGA lemma:equalanglesflip
OSAGHF
OSCKHF
ANBEAMF+COGHM+NCGHA defn:oppositeside
ANBECmF+COKHm+NCKHC defn:oppositeside
BEAMF
COGHM
NCGHA
BECmF
COKHm
NCKHC
COGKH defn:collinear
COHGK lemma:collinearorder
COHGM lemma:collinearorder
NEHG lemma:betweennotequal
COGKM lemma:collinear4
COKGM lemma:collinearorder
COHKm lemma:collinearorder
COHKG lemma:collinearorder
NEHK lemma:betweennotequal
COKmG lemma:collinear4
COKGm lemma:collinearorder
COGHK lemma:collinearorder
EQGG cn:equalityreflexive
COGHG defn:collinear
NEGK lemma:betweennotequal
NCGKA lemma:NChelper
NCKGA lemma:NCorder
NCKHC
COKHG lemma:collinearorder
EQKK cn:equalityreflexive
COKHK defn:collinear
NEGK lemma:betweennotequal
NEKG lemma:inequalitysymmetric
NCKGC lemma:NChelper
ANCOKGM+COKGm+BEAMF+BECmF+NCKGA+NCKGC
SSACKG defn:sameside
SSCAKG lemma:samesidesymmetric
BEDKC axiom:betweennesssymmetry
BEBGA axiom:betweennesssymmetry
BEHKG
BEKGP lemma:3.6a
EAHKCKGA
PRDCBA proposition:28A
PRCDAB lemma:parallelflip
PRABCD lemma:parallelsymmetric
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists