Sindbad~EG File Manager
PRABEF
PRCDEF
BEGHK
COABG
COEFH
COCDK
NEAG
NEEH
NECK
ANBEAGb+EEGbAG lemma:extension
ANBEEHf+EEHfEH lemma:extension
ANBECKd+EEKdCK lemma:extension
BEAGb
BEEHf
BECKd
NCCDE lemma:parallelNC
NECD lemma:NCdistinct
COAGb defn:collinear
COGAb lemma:collinearorder
COGAB lemma:collinearorder
NEGA lemma:inequalitysymmetric
COAbB lemma:collinear4
COBAb lemma:collinearorder
PREFAB lemma:parallelsymmetric
PREFBA lemma:parallelflip
NEAb lemma:betweennotequal
NEbA lemma:inequalitysymmetric
PREFbA lemma:collinearparallel
PREFAb lemma:parallelflip
PRAbEF lemma:parallelsymmetric
COEHf defn:collinear
COHEf lemma:collinearorder
COHEF lemma:collinearorder
NEHE lemma:inequalitysymmetric
COEfF lemma:collinear4
COFEf lemma:collinearorder
NEEf lemma:betweennotequal
NEfE lemma:inequalitysymmetric
PRAbFE lemma:parallelflip
PRAbfE lemma:collinearparallel
PRAbEf lemma:parallelflip
COCKd defn:collinear
COKCd lemma:collinearorder
COKCD lemma:collinearorder
NEKC lemma:inequalitysymmetric
COCdD lemma:collinear4
CODCd lemma:collinearorder
PREFCD lemma:parallelsymmetric
PREFDC lemma:parallelflip
NECd lemma:betweennotequal
NEdC lemma:inequalitysymmetric
PREFdC lemma:collinearparallel
PREFCd lemma:parallelflip
PRCdEF lemma:parallelsymmetric
PRCdFE lemma:parallelflip
PRCdfE lemma:collinearparallel
PRCdEf lemma:parallelflip
EQHH cn:equalityreflexive
COEHH defn:collinear
BEGHK
COAbG lemma:collinearorder
COEfH lemma:collinearorder
PRAbEf
COfEH lemma:collinearorder
PRAbfE lemma:parallelflip
PRAbHE lemma:collinearparallel
PRHEAb lemma:parallelsymmetric
PREHbA lemma:parallelflip
CObAG lemma:collinearorder
PREHGA lemma:collinearparallel
PREHAG lemma:parallelflip
PRAGEH lemma:parallelsymmetric
PRCdEf
PRCdfE lemma:parallelflip
COfEH lemma:collinearorder
PRCdHE lemma:collinearparallel
PRHECd lemma:parallelsymmetric
PRHEdC lemma:parallelflip
COCKd defn:collinear
COdCK lemma:collinearorder
NECK lemma:betweennotequal
NEKC lemma:inequalitysymmetric
PRHEKC lemma:collinearparallel
PREHCK lemma:parallelflip
TPEHCK lemma:paralleldef2B
SSCKEH defn:tarski_parallel
NCEHK lemma:parallelNC
BEKHG axiom:betweennesssymmetry
OSKEHG defn:oppositeside
OSCEHG lemma:planeseparation
ANBECQG+COEHQ+NCEHC defn:oppositeside
BECQG
COEHQ
PRCdEf
PREfCd lemma:parallelsymmetric
TPEfCd lemma:paralleldef2B
SSCdEf defn:tarski_parallel
SSdCEf lemma:samesidesymmetric
COEHf defn:collinear
COHEf lemma:collinearorder
COHEQ lemma:collinearorder
COEfQ lemma:collinear4
NCCEf lemma:parallelNC
NCEfC lemma:NCorder
OSCEfG defn:oppositeside
OSdEfG lemma:planeseparation
ANBEdPG+COEfP+NCEfd defn:oppositeside
BEdPG
NOORCRAfGH|CRAEGH assumption
ANNOCRAfGH+NOCRAEGH
NOCRAfGH
NOCRAEGH
CRAEGH lemma:30helper
ORCRAfGH|CRAEGH reductio
NOORCRCfKH|CRCEKH assumption
ANNOCRCfKH+NOCRCEKH
NOCRCfKH
NOCRCEKH
CRCEKH lemma:30helper
ORCRCfKH|CRCEKH reductio
COABG
COEFH
COFEH lemma:collinearorder
COBAG lemma:collinearorder
PRABFE lemma:parallelflip
PRABHE lemma:collinearparallel
PRABEH lemma:parallelflip
PREHAB lemma:parallelsymmetric
PREHBA lemma:parallelflip
PREHGA lemma:collinearparallel
PREHAG lemma:parallelflip
PRAGEH lemma:parallelsymmetric
NCAGH lemma:parallelNC
PRCDFE lemma:parallelflip
PRCDHE lemma:collinearparallel
PRCDEH lemma:parallelflip
PREHCD lemma:parallelsymmetric
PREHDC lemma:parallelflip
CODCK lemma:collinearorder
PREHKC lemma:collinearparallel
PREHCK lemma:parallelflip
PRCKEH lemma:parallelsymmetric
NCCKH lemma:parallelNC
NCKHC lemma:NCorder
NCEHK lemma:parallelNC
COEHf defn:collinear
NEHf lemma:betweennotequal
NEfH lemma:inequalitysymmetric
EQHH cn:equalityreflexive
COEHH defn:collinear
NCfHK lemma:NChelper
NCKHf lemma:NCorder
COKHH defn:collinear
cases PRAbCd:CRAfGH|CRAEGH
case 1:CRAfGH
OSAGHf lemma:crossimpliesopposite
cases PRAbCd:CRCfKH|CRCEKH
case 1:CRCfKH
OSfHKC lemma:crossimpliesopposite
PRAbCd proposition:30A
qedcase
case 2:CRCEKH
ANBECME+BEKMH defn:cross
BECME
BEKMH
COKMH defn:collinear
COKHM lemma:collinearorder
BEfHE axiom:betweennesssymmetry
ANCOKHM+COKHH+COKHM+BEfHE+BECME+NCKHf+NCKHC
SSfCKH defn:sameside
EQKK cn:equalityreflexive
COKHK defn:collinear
ANBECKd+COKHK+NCKHC
OSCKHd defn:oppositeside
OSfKHd lemma:planeseparation
ANBEfmd+COKHm+NCKHf defn:oppositeside
BEfmd
COKHm
PRfECd lemma:parallelsymmetric
NOMEfECd defn:parallel
NECd
COfHE lemma:collinearorder
COCKd
NEfE lemma:betweennotequal
NEfH lemma:inequalitysymmetric
NEKd lemma:betweennotequal
COHKm lemma:collinearorder
BEHmK lemma:collinearbetween
BEKmH axiom:betweennesssymmetry
BEdmf axiom:betweennesssymmetry
ANBEdmf+BEKmH
CRdfKH defn:cross
NCCKH lemma:NCorder
COCKd defn:collinear
NEdK lemma:inequalitysymmetric
COCKK defn:collinear
NCdKH lemma:NChelper
OSdHKf lemma:crossimpliesopposite
PRAbEf
PRdCEf lemma:parallelflip
BEdKC axiom:betweennesssymmetry
OSfHKd lemma:oppositesidesymmetric
OSAGHf
PRAbdC proposition:30A
PRAbCd lemma:parallelflip
qedcase
PRAbCd cases
qedcase
case 2:CRAEGH
cases PRAbCd:CRCfKH|CRCEKH
case 1:CRCfKH
ANBECMf+BEKMH defn:cross
BECMf
BEKMH
COKMH defn:collinear
COKHM lemma:collinearorder
BEEHf
NCKHE lemma:NCorder
NCKHC lemma:NCorder
ANCOKHM+COKHH+COKHM+BEEHf+BECMf+NCKHE+NCKHC
SSECKH defn:sameside
EQKK cn:equalityreflexive
COKHK defn:collinear
ANBECKd+COKHK+NCKHC
OSCKHd defn:oppositeside
OSEKHd lemma:planeseparation
ANBEEmd+COKHm+NCKHE defn:oppositeside
BEEmd
COKHm
PREfCd lemma:parallelsymmetric
NOMEEfCd defn:parallel
NECd
COEHf lemma:collinearorder
COCKd
NEEf lemma:betweennotequal
NEEH lemma:inequalitysymmetric
NEKd lemma:betweennotequal
COHKm lemma:collinearorder
BEHmK lemma:collinearbetween
BEKmH axiom:betweennesssymmetry
BEdmE axiom:betweennesssymmetry
ANBEdmE+BEKmH
CRdEKH defn:cross
NCCKH lemma:NCorder
COCKd defn:collinear
NEdK lemma:inequalitysymmetric
COCKK defn:collinear
NCdKH lemma:NChelper
OSdHKE lemma:crossimpliesopposite
PRdCfE lemma:parallelflip
BEdKC axiom:betweennesssymmetry
OSEHKd lemma:oppositesidesymmetric
OSAGHE lemma:crossimpliesopposite
PRAbfE
PRdCfE
BEfHE axiom:betweennesssymmetry
BEdKC
PRAbdC proposition:30A
PRAbCd lemma:parallelflip
qedcase
case 2:CRCEKH
OSCHKE lemma:crossimpliesopposite
OSEHKC lemma:oppositesidesymmetric
OSAGHE lemma:crossimpliesopposite
PRAbfE
PRCdfE
BECKd
BEfHE axiom:betweennesssymmetry
PRAbCd proposition:30A
qedcase
PRAbCd cases
qedcase
PRAbCd cases
PRAbdC lemma:parallelflip
COdCD lemma:collinearorder
NEDC lemma:inequalitysymmetric
PRAbDC lemma:collinearparallel
PRAbCD lemma:parallelflip
PRCDAb lemma:parallelsymmetric
PRCDbA lemma:parallelflip
CObAB lemma:collinearorder
NCABE lemma:parallelNC
NEBA lemma:NCdistinct
PRCDBA lemma:collinearparallel
PRCDAB lemma:parallelflip
PRABCD lemma:parallelsymmetric
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists