Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/FilesToPost/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/FilesToPost/Prop30.prf

PRABEF
PRCDEF
BEGHK
COABG
COEFH
COCDK
NEAG
NEEH
NECK
ANBEAGb+EEGbAG  lemma:extension
ANBEEHf+EEHfEH lemma:extension
ANBECKd+EEKdCK lemma:extension
BEAGb
BEEHf
BECKd
NCCDE  lemma:parallelNC
NECD   lemma:NCdistinct
COAGb  defn:collinear
COGAb  lemma:collinearorder
COGAB  lemma:collinearorder
NEGA lemma:inequalitysymmetric
COAbB  lemma:collinear4
COBAb  lemma:collinearorder
PREFAB  lemma:parallelsymmetric
PREFBA  lemma:parallelflip
NEAb  lemma:betweennotequal
NEbA  lemma:inequalitysymmetric
PREFbA  lemma:collinearparallel
PREFAb  lemma:parallelflip
PRAbEF  lemma:parallelsymmetric
COEHf   defn:collinear
COHEf   lemma:collinearorder
COHEF  lemma:collinearorder
NEHE    lemma:inequalitysymmetric
COEfF  lemma:collinear4
COFEf  lemma:collinearorder
NEEf   lemma:betweennotequal
NEfE   lemma:inequalitysymmetric
PRAbFE lemma:parallelflip
PRAbfE lemma:collinearparallel
PRAbEf  lemma:parallelflip
COCKd  defn:collinear
COKCd  lemma:collinearorder
COKCD  lemma:collinearorder
NEKC lemma:inequalitysymmetric
COCdD  lemma:collinear4
CODCd  lemma:collinearorder
PREFCD  lemma:parallelsymmetric
PREFDC  lemma:parallelflip
NECd  lemma:betweennotequal
NEdC  lemma:inequalitysymmetric
PREFdC  lemma:collinearparallel
PREFCd  lemma:parallelflip
PRCdEF  lemma:parallelsymmetric
PRCdFE  lemma:parallelflip
PRCdfE  lemma:collinearparallel
PRCdEf  lemma:parallelflip
EQHH  cn:equalityreflexive
COEHH  defn:collinear
BEGHK
COAbG   lemma:collinearorder
COEfH  lemma:collinearorder
PRAbEf
COfEH  lemma:collinearorder
PRAbfE  lemma:parallelflip
PRAbHE  lemma:collinearparallel
PRHEAb  lemma:parallelsymmetric
PREHbA  lemma:parallelflip
CObAG lemma:collinearorder
PREHGA lemma:collinearparallel
PREHAG lemma:parallelflip
PRAGEH lemma:parallelsymmetric
PRCdEf
PRCdfE  lemma:parallelflip
COfEH  lemma:collinearorder
PRCdHE  lemma:collinearparallel
PRHECd  lemma:parallelsymmetric
PRHEdC lemma:parallelflip
COCKd  defn:collinear
COdCK  lemma:collinearorder
NECK  lemma:betweennotequal
NEKC  lemma:inequalitysymmetric
PRHEKC lemma:collinearparallel
PREHCK lemma:parallelflip
TPEHCK lemma:paralleldef2B
SSCKEH  defn:tarski_parallel
NCEHK  lemma:parallelNC
BEKHG  axiom:betweennesssymmetry
OSKEHG  defn:oppositeside
OSCEHG  lemma:planeseparation
ANBECQG+COEHQ+NCEHC  defn:oppositeside
BECQG
COEHQ
PRCdEf
PREfCd  lemma:parallelsymmetric
TPEfCd lemma:paralleldef2B
SSCdEf  defn:tarski_parallel
SSdCEf  lemma:samesidesymmetric
COEHf  defn:collinear
COHEf  lemma:collinearorder
COHEQ  lemma:collinearorder
COEfQ lemma:collinear4
NCCEf  lemma:parallelNC
NCEfC  lemma:NCorder
OSCEfG  defn:oppositeside
OSdEfG  lemma:planeseparation
ANBEdPG+COEfP+NCEfd defn:oppositeside
BEdPG
NOORCRAfGH|CRAEGH  assumption
 ANNOCRAfGH+NOCRAEGH
 NOCRAfGH
 NOCRAEGH
 CRAEGH  lemma:30helper
ORCRAfGH|CRAEGH reductio
NOORCRCfKH|CRCEKH  assumption
 ANNOCRCfKH+NOCRCEKH
 NOCRCfKH
 NOCRCEKH
 CRCEKH  lemma:30helper
ORCRCfKH|CRCEKH reductio
COABG
COEFH
COFEH  lemma:collinearorder
COBAG  lemma:collinearorder
PRABFE lemma:parallelflip
PRABHE  lemma:collinearparallel
PRABEH lemma:parallelflip
PREHAB lemma:parallelsymmetric
PREHBA lemma:parallelflip
PREHGA lemma:collinearparallel
PREHAG lemma:parallelflip
PRAGEH lemma:parallelsymmetric
NCAGH  lemma:parallelNC
PRCDFE lemma:parallelflip
PRCDHE lemma:collinearparallel
PRCDEH lemma:parallelflip
PREHCD lemma:parallelsymmetric
PREHDC lemma:parallelflip
CODCK  lemma:collinearorder
PREHKC lemma:collinearparallel
PREHCK lemma:parallelflip
PRCKEH lemma:parallelsymmetric
NCCKH   lemma:parallelNC
NCKHC   lemma:NCorder
NCEHK   lemma:parallelNC
COEHf  defn:collinear
NEHf  lemma:betweennotequal
NEfH  lemma:inequalitysymmetric 
EQHH  cn:equalityreflexive
COEHH  defn:collinear
NCfHK  lemma:NChelper   
NCKHf  lemma:NCorder 
COKHH  defn:collinear                                                                                                                                                                                                                                                                                                                                     
cases PRAbCd:CRAfGH|CRAEGH
 case 1:CRAfGH
  OSAGHf   lemma:crossimpliesopposite
  cases PRAbCd:CRCfKH|CRCEKH
   case 1:CRCfKH
    OSfHKC   lemma:crossimpliesopposite
    PRAbCd   proposition:30A
   qedcase
   case 2:CRCEKH
    ANBECME+BEKMH  defn:cross
    BECME
    BEKMH
    COKMH  defn:collinear
    COKHM  lemma:collinearorder
    BEfHE  axiom:betweennesssymmetry
    ANCOKHM+COKHH+COKHM+BEfHE+BECME+NCKHf+NCKHC
    SSfCKH   defn:sameside
    EQKK  cn:equalityreflexive
    COKHK  defn:collinear
    ANBECKd+COKHK+NCKHC
    OSCKHd   defn:oppositeside
    OSfKHd   lemma:planeseparation
    ANBEfmd+COKHm+NCKHf defn:oppositeside
    BEfmd
    COKHm
    PRfECd  lemma:parallelsymmetric
    NOMEfECd  defn:parallel
    NECd
    COfHE  lemma:collinearorder
    COCKd
    NEfE  lemma:betweennotequal
    NEfH   lemma:inequalitysymmetric
    NEKd   lemma:betweennotequal
    COHKm   lemma:collinearorder
    BEHmK  lemma:collinearbetween
    BEKmH  axiom:betweennesssymmetry
    BEdmf  axiom:betweennesssymmetry
    ANBEdmf+BEKmH
    CRdfKH  defn:cross
    NCCKH  lemma:NCorder
    COCKd  defn:collinear
    NEdK  lemma:inequalitysymmetric
    COCKK  defn:collinear
    NCdKH  lemma:NChelper
    OSdHKf  lemma:crossimpliesopposite
    PRAbEf
    PRdCEf  lemma:parallelflip
    BEdKC  axiom:betweennesssymmetry
    OSfHKd lemma:oppositesidesymmetric
    OSAGHf
    PRAbdC  proposition:30A
    PRAbCd  lemma:parallelflip
   qedcase
  PRAbCd cases
 qedcase
 case 2:CRAEGH
 cases PRAbCd:CRCfKH|CRCEKH
   case 1:CRCfKH
    ANBECMf+BEKMH  defn:cross
    BECMf
    BEKMH
    COKMH  defn:collinear
    COKHM  lemma:collinearorder
    BEEHf  
    NCKHE  lemma:NCorder
    NCKHC  lemma:NCorder
    ANCOKHM+COKHH+COKHM+BEEHf+BECMf+NCKHE+NCKHC
    SSECKH   defn:sameside
    EQKK  cn:equalityreflexive
    COKHK  defn:collinear
    ANBECKd+COKHK+NCKHC
    OSCKHd   defn:oppositeside
    OSEKHd   lemma:planeseparation
    ANBEEmd+COKHm+NCKHE defn:oppositeside
    BEEmd
    COKHm
    PREfCd  lemma:parallelsymmetric
    NOMEEfCd  defn:parallel
    NECd
    COEHf  lemma:collinearorder
    COCKd
    NEEf  lemma:betweennotequal
    NEEH   lemma:inequalitysymmetric
    NEKd   lemma:betweennotequal
    COHKm   lemma:collinearorder
    BEHmK  lemma:collinearbetween
    BEKmH  axiom:betweennesssymmetry
    BEdmE  axiom:betweennesssymmetry
    ANBEdmE+BEKmH
    CRdEKH  defn:cross
    NCCKH  lemma:NCorder
    COCKd  defn:collinear
    NEdK  lemma:inequalitysymmetric
    COCKK  defn:collinear
    NCdKH  lemma:NChelper
    OSdHKE  lemma:crossimpliesopposite
    PRdCfE  lemma:parallelflip
    BEdKC  axiom:betweennesssymmetry
    OSEHKd lemma:oppositesidesymmetric
    OSAGHE lemma:crossimpliesopposite
    PRAbfE
    PRdCfE
    BEfHE  axiom:betweennesssymmetry
    BEdKC
    PRAbdC  proposition:30A
    PRAbCd  lemma:parallelflip
   qedcase    
   case 2:CRCEKH
    OSCHKE   lemma:crossimpliesopposite
    OSEHKC   lemma:oppositesidesymmetric
    OSAGHE   lemma:crossimpliesopposite
    PRAbfE
    PRCdfE
    BECKd
    BEfHE   axiom:betweennesssymmetry
    PRAbCd   proposition:30A   
   qedcase   
  PRAbCd cases
 qedcase
PRAbCd  cases
PRAbdC  lemma:parallelflip
COdCD   lemma:collinearorder
NEDC    lemma:inequalitysymmetric
PRAbDC   lemma:collinearparallel
PRAbCD   lemma:parallelflip
PRCDAb  lemma:parallelsymmetric
PRCDbA  lemma:parallelflip
CObAB  lemma:collinearorder
NCABE  lemma:parallelNC
NEBA    lemma:NCdistinct
PRCDBA  lemma:collinearparallel
PRCDAB  lemma:parallelflip
PRABCD  lemma:parallelsymmetric

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists