Sindbad~EG File Manager
PRABCD
BEAGB
BECHD
BEEGH
OSAGHD
COCHD defn:collinear
NEGH lemma:betweennotequal
NEAB lemma:betweennotequal
NECD lemma:betweennotequal
ANBEARD+COGHR+NCGHA defn:oppositeside
OSDGHA lemma:oppositesidesymmetric
NCGHD defn:oppositeside
NCDHG lemma:NCorder
CODHC lemma:collinearorder
EQHH cn:equalityreflexive
CODHH defn:collinear
NECH lemma:betweennotequal
NCCHG lemma:NChelper
EQCC cn:equalityreflexive
COCHC defn:collinear
COCHD
NECD lemma:betweennotequal
NCCDG lemma:NChelper
ANBEPGQ+EAQGHGHC+EAQGHCHG+EAHGQCHG+EAPGHGHD+EAPGHDHG+EAHGPDHG+PRPQCD+EEPGHD+EEGQCH+EEGSSH+EEPSSD+EECSSQ+BEPSD+BECSQ+BEGSH proposition:31
BEPGQ
EAPGHGHD
EEGSSH
EEPSSD
EECSSQ
BECSQ
BEGSH
PRABCD
NOMEABCD defn:parallel
EQPP cn:equalityreflexive
NEPG lemma:betweennotequal
NEGP lemma:inequalitysymmetric
RAGPP lemma:ray4
BEPSD
BEARD
COGSH defn:collinear
COGHS lemma:collinearorder
COGHR
NCGHA
EAGHDPGH lemma:equalanglessymmetric
NCPGH lemma:equalanglesNC
NCGHP lemma:NCorder
SSAPGH defn:sameside
EQHH cn:equalityreflexive
NEGH lemma:betweennotequal
RAGHH lemma:ray4
RAGPP
AOHGAHGP assumption
ANBEPMH+RAGAM lemma:crossbar2
RAGAM
BEPSD
BEGSH
BEPMH
EEGSHS lemma:congruenceflip
EESPSD lemma:congruenceflip
ANBEGMK+BEDHK postulate:Euclid5
BEGMK
BEDHK
COGAM lemma:rayimpliescollinear
COGMK defn:collinear
COMGA lemma:collinearorder
COMGK lemma:collinearorder
NEGM lemma:raystrict
NEMG lemma:inequalitysymmetric
COGAK lemma:collinear4
COAGB defn:collinear
COAGK lemma:collinearorder
COGAB lemma:collinearorder
COGAK lemma:collinearorder
NEAG lemma:betweennotequal
NEGA lemma:inequalitysymmetric
COABK lemma:collinear4
COHDK defn:collinear
COHDC lemma:collinearorder
NEHD lemma:betweennotequal
CODKC lemma:collinear4
COCDK lemma:collinearorder
ANNEAB+NECD+COABK+COCDK
MEABCD defn:meet
NOAOHGAHGP reductio
AOHGPHGA assumption
NCPGH lemma:NCorder
EAPGHHGP lemma:ABCequalsCBA
AOPGHHGA lemma:angleorderrespectscongruence2
COHGA assumption
COGHA lemma:collinearorder
NCGHA
NCHGA reductio
EAHGAAGH lemma:ABCequalsCBA
EAAGHHGA lemma:equalanglessymmetric
AOPGHAGH lemma:angleorderrespectscongruence
EQHH cn:equalityreflexive
NEGH
RAGHH lemma:ray4
BEPGQ
SUPGHHQ defn:supplement
BEDHC axiom:betweennesssymmetry
EQGG cn:equalityreflexive
NEHG lemma:inequalitysymmetric
RAHGG lemma:ray4
SUDHGGC defn:supplement
EAPGHGHD
EAGHDDHG lemma:ABCequalsCBA
EAPGHDHG lemma:equalanglestransitive
EAHGQGHC lemma:supplements
SUAGHHB defn:supplement
AOHGBHGQ lemma:supplementinequality
BEBGA axiom:betweennesssymmetry
EQGG cn:equalityreflexive
COGHG defn:collinear
COGHB assumption
COAGB defn:collinear
COBGA lemma:collinearorder
COBGH lemma:collinearorder
NEGB lemma:betweennotequal
NEBG lemma:inequalitysymmetric
COGAH lemma:collinear4
COHGA lemma:collinearorder
NCGHB reductio
OSBGHA defn:oppositeside
OSAGHB lemma:oppositesidesymmetric
SSAPGH defn:sameside
SSPAGH lemma:samesidesymmetric
OSPGHB lemma:planeseparation
ANBEPLB+COGHL+NCGHP defn:oppositeside
BEPLB
BEBLP axiom:betweennesssymmetry
COGHL
EAGHCHGQ lemma:equalanglessymmetric
NCHGQ lemma:equalanglesNC
COGHQ assumption
COHGQ lemma:collinearorder
NCGHQ reductio
NCGHB
BEQGP axiom:betweennesssymmetry
SSBQGH defn:sameside
AOHGBHGQ
SSBQGH
RAGHH
EQQQ cn:equalityreflexive
NEQG lemma:betweennotequal
NEGQ lemma:inequalitysymmetric
RAGQQ lemma:ray4
ANBEQMH+RAGBM lemma:crossbar2
RAGBM
EEGSHS lemma:congruenceflip
BEQSC axiom:betweennesssymmetry
BEGSH
BEQMH
EESQCS lemma:congruencesymmetric
EESQSC lemma:congruenceflip
NCGHC lemma:NCorder
ANBEGMK+BECHK postulate:Euclid5
BEGMK
BECHK
COGBM lemma:rayimpliescollinear
COGMK defn:collinear
COMGB lemma:collinearorder
COMGK lemma:collinearorder
NEGM lemma:raystrict
NEMG lemma:inequalitysymmetric
COGBK lemma:collinear4
COBGA defn:collinear
COBGK lemma:collinearorder
COGBA lemma:collinearorder
COGBK lemma:collinearorder
NEBG lemma:betweennotequal
NEGB lemma:inequalitysymmetric
COBAK lemma:collinear4
COABK lemma:collinearorder
COHCK defn:collinear
COHCD lemma:collinearorder
NEHC lemma:betweennotequal
COCKD lemma:collinear4
COCDK lemma:collinearorder
ANCOABK+COCDK
MEABCD defn:meet
NOAOHGPHGA reductio
COHGP assumption
COGHP lemma:collinearorder
NCHGP reductio
COHGA assumption
COGHA lemma:collinearorder
NCGHA defn:oppositeside
NCHGA reductio
NOEAHGAHGP assumption
AOHGAHGP lemma:angletrichotomy2
NOAOHGAHGP
EAHGAHGP reductio
EAHGPPGH lemma:ABCequalsCBA
EAPGHGHD
EAHGPGHD lemma:equalanglestransitive
EAGHDDHG lemma:ABCequalsCBA
EAHGPDHG lemma:equalanglestransitive
EAHGADHG lemma:equalanglestransitive
COAGH assumption
COGHA lemma:collinearorder
NCGHA
NCAGH reductio
EAAGHHGA lemma:ABCequalsCBA
EAAGHDHG lemma:equalanglestransitive
NCDHG lemma:equalanglesNC
EADHGGHD lemma:ABCequalsCBA
EAAGHGHD lemma:equalanglestransitive
BEAGB
BEEGH
BEHGE axiom:betweennesssymmetry
NCAGH
EAAGHEGB proposition:15
EAEGBAGH lemma:equalanglessymmetric
EAEGBGHD lemma:equalanglestransitive
EAAGHGHD
EQHH cn:equalityreflexive
RAGHH lemma:ray4
SUAGHHB defn:supplement
COBGH assumption
COAGB defn:collinear
COBGA lemma:collinearorder
NEGB lemma:betweennotequal
NEBG lemma:inequalitysymmetric
COGHA lemma:collinear4
COAGH lemma:collinearorder
NCAGH
NCBGH reductio
EABGHBGH lemma:equalanglesreflexive
EAGHDAGH lemma:equalanglessymmetric
EAAGHHGA lemma:ABCequalsCBA
EAGHDHGA lemma:equalanglestransitive
SUBGHHA lemma:supplementsymmetric
RTBGHGHD defn:tworightangles
ANEAAGHGHD+EAEGBGHD+RTBGHGHD
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists