Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/FilesToPost/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/FilesToPost/Prop29.prf

PRABCD
BEAGB
BECHD
BEEGH
OSAGHD
COCHD  defn:collinear
NEGH  lemma:betweennotequal
NEAB  lemma:betweennotequal
NECD  lemma:betweennotequal
ANBEARD+COGHR+NCGHA  defn:oppositeside
OSDGHA  lemma:oppositesidesymmetric
NCGHD  defn:oppositeside
NCDHG  lemma:NCorder
CODHC  lemma:collinearorder
EQHH   cn:equalityreflexive
CODHH  defn:collinear
NECH   lemma:betweennotequal
NCCHG  lemma:NChelper
EQCC  cn:equalityreflexive
COCHC defn:collinear
COCHD 
NECD  lemma:betweennotequal
NCCDG  lemma:NChelper
ANBEPGQ+EAQGHGHC+EAQGHCHG+EAHGQCHG+EAPGHGHD+EAPGHDHG+EAHGPDHG+PRPQCD+EEPGHD+EEGQCH+EEGSSH+EEPSSD+EECSSQ+BEPSD+BECSQ+BEGSH proposition:31
BEPGQ
EAPGHGHD
EEGSSH
EEPSSD
EECSSQ
BECSQ
BEGSH
PRABCD
NOMEABCD  defn:parallel
EQPP   cn:equalityreflexive
NEPG  lemma:betweennotequal
NEGP  lemma:inequalitysymmetric
RAGPP lemma:ray4
BEPSD  
BEARD  
COGSH  defn:collinear
COGHS  lemma:collinearorder
COGHR
NCGHA
EAGHDPGH  lemma:equalanglessymmetric
NCPGH  lemma:equalanglesNC
NCGHP  lemma:NCorder
SSAPGH  defn:sameside
EQHH  cn:equalityreflexive
NEGH  lemma:betweennotequal
RAGHH  lemma:ray4
RAGPP
AOHGAHGP   assumption
 ANBEPMH+RAGAM  lemma:crossbar2
 RAGAM 
 BEPSD
 BEGSH
 BEPMH
 EEGSHS  lemma:congruenceflip
 EESPSD   lemma:congruenceflip
 ANBEGMK+BEDHK  postulate:Euclid5
 BEGMK
 BEDHK
 COGAM  lemma:rayimpliescollinear
 COGMK  defn:collinear
 COMGA  lemma:collinearorder
 COMGK  lemma:collinearorder
 NEGM   lemma:raystrict
 NEMG   lemma:inequalitysymmetric
 COGAK  lemma:collinear4
 COAGB defn:collinear
 COAGK  lemma:collinearorder
 COGAB  lemma:collinearorder
 COGAK  lemma:collinearorder
 NEAG   lemma:betweennotequal
 NEGA   lemma:inequalitysymmetric
 COABK  lemma:collinear4
 COHDK  defn:collinear
 COHDC  lemma:collinearorder
 NEHD   lemma:betweennotequal
 CODKC  lemma:collinear4
 COCDK  lemma:collinearorder
 ANNEAB+NECD+COABK+COCDK 
 MEABCD  defn:meet
NOAOHGAHGP reductio

AOHGPHGA  assumption
 NCPGH  lemma:NCorder
 EAPGHHGP lemma:ABCequalsCBA
 AOPGHHGA lemma:angleorderrespectscongruence2
 COHGA  assumption
  COGHA lemma:collinearorder
  NCGHA
 NCHGA reductio
 EAHGAAGH lemma:ABCequalsCBA
 EAAGHHGA lemma:equalanglessymmetric
 AOPGHAGH lemma:angleorderrespectscongruence
 EQHH  cn:equalityreflexive
 NEGH  
 RAGHH  lemma:ray4
 BEPGQ
 SUPGHHQ  defn:supplement
 BEDHC  axiom:betweennesssymmetry
 EQGG  cn:equalityreflexive
 NEHG  lemma:inequalitysymmetric
 RAHGG lemma:ray4
 SUDHGGC   defn:supplement
 EAPGHGHD 
 EAGHDDHG  lemma:ABCequalsCBA
 EAPGHDHG  lemma:equalanglestransitive
 EAHGQGHC  lemma:supplements
 SUAGHHB  defn:supplement
 AOHGBHGQ  lemma:supplementinequality
 BEBGA   axiom:betweennesssymmetry
 EQGG   cn:equalityreflexive
 COGHG   defn:collinear 
 COGHB  assumption
  COAGB  defn:collinear
  COBGA  lemma:collinearorder
  COBGH  lemma:collinearorder
  NEGB  lemma:betweennotequal
  NEBG  lemma:inequalitysymmetric
  COGAH  lemma:collinear4
  COHGA  lemma:collinearorder
 NCGHB  reductio
 OSBGHA   defn:oppositeside
 OSAGHB   lemma:oppositesidesymmetric
 SSAPGH   defn:sameside
 SSPAGH  lemma:samesidesymmetric
 OSPGHB  lemma:planeseparation
 ANBEPLB+COGHL+NCGHP defn:oppositeside
 BEPLB
 BEBLP  axiom:betweennesssymmetry
 COGHL
 EAGHCHGQ lemma:equalanglessymmetric
 NCHGQ  lemma:equalanglesNC
 COGHQ assumption
  COHGQ lemma:collinearorder
 NCGHQ  reductio
 NCGHB
 BEQGP  axiom:betweennesssymmetry 
 SSBQGH  defn:sameside
 AOHGBHGQ
 SSBQGH
 RAGHH
 EQQQ  cn:equalityreflexive
 NEQG  lemma:betweennotequal
 NEGQ  lemma:inequalitysymmetric
 RAGQQ  lemma:ray4
 ANBEQMH+RAGBM  lemma:crossbar2
 RAGBM 
 EEGSHS   lemma:congruenceflip
 BEQSC   axiom:betweennesssymmetry
 BEGSH
 BEQMH
 EESQCS lemma:congruencesymmetric
 EESQSC lemma:congruenceflip
 NCGHC  lemma:NCorder
 ANBEGMK+BECHK  postulate:Euclid5
 BEGMK
 BECHK
 COGBM  lemma:rayimpliescollinear
 COGMK  defn:collinear
 COMGB  lemma:collinearorder
 COMGK  lemma:collinearorder
 NEGM   lemma:raystrict
 NEMG   lemma:inequalitysymmetric
 COGBK  lemma:collinear4
 COBGA defn:collinear
 COBGK  lemma:collinearorder
 COGBA  lemma:collinearorder
 COGBK  lemma:collinearorder
 NEBG   lemma:betweennotequal
 NEGB   lemma:inequalitysymmetric
 COBAK  lemma:collinear4
 COABK  lemma:collinearorder
 COHCK  defn:collinear
 COHCD  lemma:collinearorder
 NEHC   lemma:betweennotequal
 COCKD  lemma:collinear4
 COCDK  lemma:collinearorder
 ANCOABK+COCDK 
 MEABCD  defn:meet
NOAOHGPHGA reductio
COHGP assumption
 COGHP lemma:collinearorder
NCHGP reductio
COHGA assumption
 COGHA lemma:collinearorder
 NCGHA  defn:oppositeside
NCHGA reductio
NOEAHGAHGP assumption
 AOHGAHGP lemma:angletrichotomy2 
 NOAOHGAHGP
EAHGAHGP reductio
EAHGPPGH  lemma:ABCequalsCBA
EAPGHGHD
EAHGPGHD lemma:equalanglestransitive
EAGHDDHG  lemma:ABCequalsCBA
EAHGPDHG lemma:equalanglestransitive
EAHGADHG lemma:equalanglestransitive
COAGH assumption
 COGHA lemma:collinearorder
 NCGHA
NCAGH  reductio
EAAGHHGA lemma:ABCequalsCBA
EAAGHDHG  lemma:equalanglestransitive
NCDHG  lemma:equalanglesNC
EADHGGHD  lemma:ABCequalsCBA
EAAGHGHD  lemma:equalanglestransitive
BEAGB
BEEGH
BEHGE  axiom:betweennesssymmetry
NCAGH 
EAAGHEGB  proposition:15
EAEGBAGH  lemma:equalanglessymmetric
EAEGBGHD   lemma:equalanglestransitive
EAAGHGHD
EQHH    cn:equalityreflexive
RAGHH  lemma:ray4
SUAGHHB   defn:supplement
COBGH assumption
 COAGB  defn:collinear
 COBGA  lemma:collinearorder
 NEGB  lemma:betweennotequal
 NEBG  lemma:inequalitysymmetric
 COGHA  lemma:collinear4
 COAGH  lemma:collinearorder
 NCAGH
NCBGH reductio
EABGHBGH  lemma:equalanglesreflexive
EAGHDAGH  lemma:equalanglessymmetric
EAAGHHGA  lemma:ABCequalsCBA
EAGHDHGA  lemma:equalanglestransitive
SUBGHHA  lemma:supplementsymmetric
RTBGHGHD  defn:tworightangles
ANEAAGHGHD+EAEGBGHD+RTBGHGHD

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists