Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/Definitions.txt

unequal	`NE A B <=> ~(EQ A B)`
collinear	`CO A B C <=> (EQ A B \/ EQ A C \/ EQ B C \/ BE B A C \/ BE A B C \/ BE A C B)`
noncollinear	`NC A B C <=> NE A B /\ NE A C /\ NE B C /\ ~(BE A B C) /\ ~(BE A C B) /\ ~(BE B A C)`
inside	`IC P J <=> ?X Y U V W. CI J U V W /\ (EQ P U \/ BE U Y X /\ EE U X V W /\ EE U P U Y)`
outside	`OC P J <=> ?X U V W. CI J U V W /\ BE U X P /\ EE U X V W`
on	`ON B J <=> ?X Y U. CI J U X Y /\ EE U B X Y`
equilateral	`EL A B C <=> EE A B B C /\ EE B C C A`
triangle	`TR A B C <=> NC A B C`
ray	`RA A B C <=> ?X. BE X A C /\ BE X A B`
lessthan	`LT A B C D <=> ?X. BE C X D /\ EE C X A B`
midpoint	`MI A B C <=> BE A B C /\ EE A B B C`
equalangles	`EA A B C a b c <=> ?U V u v. RA B A U /\ RA B C V /\ RA b a u /\ RA b c v /\ EE B U b u /\ EE B V b v /\ EE U V u v /\ NC A B C`
supplement	`SU A B C D F <=> RA B C D /\ BE A B F`
rightangle	`RR A B C <=> ?X. BE A B X /\ EE A B X B /\ EE A C X C /\ NE B C`
perpat	`PA P Q A B C <=> ?X. CO P Q C /\ CO A B C /\ CO A B X /\ RR X C P`
perpendicular	`PE P Q A B <=> ?X. PA P Q A B X`
interior	`IA A B C P <=> ?X Y. RA B A X /\ RA B C Y /\ BE X P Y`
oppositeside	`OS P A B Q <=> ?X. BE P X Q /\ CO A B X /\ NC A B P`
sameside	`SS P Q A B <=> ?X U V. CO A B U /\ CO A B V /\ BE P U X /\ BE Q V X /\ NC A B P /\ NC A B Q`
isosceles	`IS A B C <=> TR A B C /\ EE A B A C`
cut	`CU A B C D E <=> BE A E B /\ BE C E D /\ NC A B C /\ NC A B D`
trianglecongruence	`TC A B C a b c <=> EE A B a b /\ EE B C b c /\ EE A C a c /\ TR A B C`
anglelessthan	`AO A B C D E F <=> ?U X V. BE U X V /\ RA E D U /\ RA E F V /\ EA A B C D E X`
togethergreater	`TG A B C D E F <=> ?X. BE A B X /\ EE B X C D /\ LT E F A X`
togetherfour	`TT A B C D E F G H <=> ?X. BE E F X /\ EE F X G H /\ TG A B C D E X`
tworightangles	`RT A B C D E F <=> ?X Y Z U V. SU X Y U V Z /\ EA A B C X Y U /\ EA D E F V Y Z`
meet	`ME A B C D <=> ?X. NE A B /\ NE C D /\ CO A B X /\ CO C D X`
cross	`CR A B C D <=> ?X. BE A X B /\ BE C X D`
tarski_parallel	`TP A B C D <=> NE A B /\ NE C D /\ ~(ME A B C D) /\ SS C D A B`
parallel	`PR A B C D <=> ?U V u v X. NE A B /\ NE C D /\ CO A B U /\ CO A B V /\ NE U V /\ CO C D u /\ CO C D v /\ NE u v /\ ~(ME A B C D) /\ BE U X v /\ BE u X V`
anglesum	`AS A B C D E F P Q R <=> ?X. EA A B C P Q X /\ EA D E F X Q R /\ BE P X R`
doubleangle	`DA A B C P Q R <=> ?X. EA A B X X B C /\ BE A X C /\ EA A B X P Q R`
parallelogram	`PG A B C D <=> PR A B C D /\ PR A D B C`
square	`SQ A B C D <=> EE A B C D /\ EE A B B C /\ EE A B D A /\ RR D A B /\ RR A B C /\ RR B C D /\ RR C D A`
rectangle	`RE A B C D <=> RR D A B /\ RR A B C /\ RR B C D /\ RR C D A /\ CR A C B D`
convexquad	`CQ A B C D <=> ?X. BE A X C /\ BE B X D /\ NE A B /\ NE A D /\ NE B C`
segmentcutscircle	`CA A B J E <=> CI J C P Q /\ ON E J /\ BE A E B /\ IC A J /\ OC B J`
linecutscircle	`LC A B J <=> ?C P Q X Y Z. CI C J C P Q /\ CO A B X /\ CO A B Y /\ CO A B Z /\ CA X Y J Z`
tangentline	`TA A B J E <=> ?C P Q. CI J C P Q /\ ON E J /\ BE A E B /\ ~(LC A B J)`
congruentrectangles	`RC A B C D a b c d <=> RE A B C D /\ RE a b c d /\ EE A B a b /\ EE B C b c`
equalrectangles	`ER A B C D a b c d <=> ?X Y Z U x z u w W. RC A B C D X Y Z U /\ RC a b c d x Y z u /\ BE x Y Z /\ BE X Y z /\ BE W U w`
baserectangle	`BR A B C D E <=> RE B C D E /\ CO D A E`
figurerectangle	`FR A B C D E F G H <=> RE E F G H /\ BE E B F /\ BE H D G /\ BR C B D G F /\ BR A B D H E`
equaltriangles	`ET A B C a b c <=> ?X Y x y. RE A B X Y /\ RE a b x y /\ CO X Y C /\ CO x y c /\ ER A B X Y a b x y`
equalfigures	`EF A B C D a b c d <=> ?X Y Z U x y z u. OS A B C D /\ OS a b c d /\ FR A B C D X Y Z U /\ FR a b c d x y z u /\ ER X Y Z U x y z u`
equaltrianglefigure	`TF A B C a b c d <=> ?X Y x y z u. BR A B C X Y /\ FR a b c d x y z u /\ ER B C X Y x y z u`
circlecut	`CC J K B <=> ?X Y. ON J B /\ ON K B /\ ON K X /\ ON K Y /\ IC J X /\ OC J Y`
proportion	`PN A B C D a b c d <=> ?X Y Z x y. RR X Z Y /\ RA Z X x /\ RA Z Y y /\ EE A B Z X /\ EE A C Z Y /\ EE A c Z y /\ EE A b Z x /\ (PR X Y x y A N E Q X x E Q Y y)`

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists