Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/programs/Appendix.tex


\section*{Appendix}
\subsection*{Common Notions}
\begin{alltt}
equalitytransitive
   hypotheses: EQAC EQBC 
   conclusion: EQAB
congruencetransitive
   hypotheses: EEPQBC EEPQDE 
   conclusion: EEBCDE
equalityreflexive
   hypotheses: none
   conclusion: EQAA
congruencereflexive
   hypotheses: none
   conclusion: EEABAB
equalityreverse
   hypotheses: none
   conclusion: EEABBA
stability
   hypotheses: NONEAB 
   conclusion: EQAB
equalitysub
   hypotheses: EQDA BEABC 
   conclusion: BEDBC
\end{alltt}
\subsection*{Definitions}
\begin{alltt}
unequal  {\em A and B are distinct points}
   The definition of NEAB
   is: NOEQAB 
collinear  {\em A, B, and C are collinear}
   The definition of COABC
   is: OREQAB|EQAC|EQBC|BEBAC|BEABC|BEACB 
noncollinear  {\em A, B, and C are not collinear}
   The definition of NCABC
   is: NEAB NEAC NEBC NOBEABC NOBEACB NOBEBAC 
circle  {\em X is the circle with center C and radius AB}
   The definition of NEAB
   is: For some X, CIXCAB 
inside  {\em P is inside the circle J of center C and radius AB}
   The definition of CIJCAB ICPJ 
   is: For some XY, CIJCAB BEXCY EECYAB EECXAB BEXPY 
outside  {\em P is outside the circle J of center C and radius AB}
   The definition of CIJCAB OCPJ 
   is: For some X, CIJCAB BECXP EECXAB 
on  {\em P is on the circle J of center C and radius AB}
   The definition of CIJACD ONBJ 
   is: CIJACD EEABCD 
equilateral  {\em ABC is equilateral}
   The definition of ELABC
   is: EEABBC EEBCCA 
triangle  {\em ABC is a triangle}
   The definition of TRABC
   is: NCABC 
ray  {\em C lies on ray AB}
   The definition of RAABC
   is: For some X, BEXAC BEXAB 
lessthan  {\em AB is less than CD}
   The definition of LTABCD
   is: For some X, BECXD EECXAB 
midpoint  {\em B is the midpoint of AC}
   The definition of MIABC
   is: BEABC EEABBC 
equalangles  {\em Angle ABC is equal to angle abc}
   The definition of EAABCabc
   is: For some UVuv, RABAU RABCV RAbau RAbcv EEBUbu EEBVbv EEUVuv NCABC 
supplement  {\em DBF is a supplement of ABC}
   The definition of SUABCDF
   is: RABCD BEABF 
rightangle  {\em ABC is a right angle}
   The definition of RRABC
   is: For some X, BEABX EEABXB EEACXC NEBC 
perpat  {\em PQ is perpendicular to AB at C and NCABP}
   The definition of PAPQABC
   is: For some X, COPQC COABC COABX RRXCP 
perpendicular  {\em PQ is perpendicular to AB}
   The definition of PEPQAB
   is: For some X, PAPQABX 
interior  {\em P is in the interior of angle ABC}
   The definition of IAABCP
   is: For some XY, RABAX RABCY BEXPY 
oppositeside  {\em P and Q are on opposite sides of AB}
   The definition of OSPABQ
   is: For some X, BEPXQ COABX NCABP 
sameside  {\em P and Q are on the same side of AB}
   The definition of SSPQAB
   is: For some XUV, COABU COABV BEPUX BEQVX NCABP NCABQ 
isosceles  {\em ABC is isosceles with base BC}
   The definition of ISABC
   is: TRABC EEABAC 
cut  {\em AB cuts CD in E}
   The definition of CUABCDE
   is: BEAEB BECED NCABC NCABD 
trianglecongruence  {\em Triangle ABC is congruent to abc}
   The definition of TCABCabc
   is: EEABab EEBCbc EEACac TRABC 
anglelessthan  {\em Angle ABC is less than angle DEF}
   The definition of AOABCDEF
   is: For some UXV, BEUXV RAEDU RAEFV EAABCDEX 
togethergreater  {\em AB and CD are together greater than EF}
   The definition of TGABCDEF
   is: For some X, BEABX EEBXCD LTEFAX 
togetherfour  {\em  AB,CD are together greater than EF,GH}
   The definition of TTABCDEFGH
   is: For some X, BEEFX EEFXGH TGABCDEX 
tworightangles  {\em ABC and DEF make together two right angles}
   The definition of RTABCDEF
   is: For some XYZUV, SUXYUVZ EAABCXYU EADEFVYZ 
meet  {\em AB meets CD}
   The definition of MEABCD
   is: For some X, NEAB NECD COABX COCDX 
cross  {\em AB crosses CD}
   The definition of CRABCD
   is: For some X, BEAXB BECXD 
tarski\_parallel  {\em AB and CD are Tarski parallel}
   The definition of TPABCD
   is: NEAB NECD NOMEABCD SSCDAB 
parallel  {\em AB and CD are parallel}
   The definition of PRABCD
   is: For some UVuvX, NEAB NECD COABU COABV NEUV COCDu COCDv NEuv 
   NOMEABCD BEUXv BEuXV 
anglesum  {\em ABC and DEF are together equal to PQR}
   The definition of ASABCDEFPQR
   is: For some X, EAABCPQX EADEFXQR BEPXR 
parallelogram  {\em ABCD is a parallelogram}
   The definition of PGABCD
   is: PRABCD PRADBC 
square  {\em ABCD is a square}
   The definition of SQABCD
   is: EEABCD EEABBC EEABDA RRDAB RRABC RRBCD RRCDA 
rectangle  {\em ABCD is a rectangle}
   The definition of REABCD
   is: RRDAB RRABC RRBCD RRCDA CRACBD 
\end{alltt}
\subsection*{Axioms of betweenness and congruence}
\begin{alltt}
betweennessidentity
   hypotheses: none
   conclusion: NOBEABA
betweennesssymmetry
   hypotheses: BEABC 
   conclusion: BECBA
innertransitivity
   hypotheses: BEABD BEBCD 
   conclusion: BEABC
connectivity
   hypotheses: BEABD BEACD NOBEABC NOBEACB 
   conclusion: EQBC
nullsegment1
   hypotheses: EEABCC 
   conclusion: EQAB
nullsegment2
   hypotheses: none
   conclusion: EEAABB
5-line
   hypotheses: EEBCbc EEADad EEBDbd BEABC BEabc EEABab 
   conclusion: EEDCdc
\end{alltt}
\subsection*{Postulates}
\begin{alltt}
extension
   hypotheses: NEAB NECD 
   conclusion: For some X, BEABX EEBXCD 
Pasch-inner
   hypotheses: BEAPC BEBQC NCACB 
   conclusion: For some X, BEAXQ BEBXP 
Pasch-outer
   hypotheses: BEAPC BEBCQ NCBQA 
   conclusion: For some X, BEAXQ BEBPX 
line-circle
   hypotheses: CIKCPQ ICBK NEAB 
   conclusion: For some XY, COABX COABY ONXK ONYK 
               BEXBY 
circle-circle
   hypotheses: CIJCRS ICPJ OCQJ CIKDFG ONPK ONQK 
   conclusion: For some X, ONXJ ONXK 
Euclid5
   hypotheses: BErts BEptq BEraq EEptqt EEtrts NCpqs 
   conclusion: For some X, BEpaX BEsqX 
\end{alltt}
\subsection*{Axioms for Equal Figures}
\begin{alltt}
congruentequal
   hypotheses: TCABCabc 
   conclusion: ETABCabc 
ETpermutation
   hypotheses: ETABCabc 
   conclusion: ETABCbca ETABCacb ETABCbac ETABCcba 
               ETABCcab 
ETsymmetric
   hypotheses: ETABCabc 
   conclusion: ETabcABC 
EFpermutation
   hypotheses: EFABCDabcd 
   conclusion: EFABCDbcda EFABCDdcba EFABCDcdab EFABCDbadc 
               EFABCDdabc EFABCDcbad EFABCDadcb 
halvesofequals
   hypotheses: ETABCBCD OSABCD ETabcbcd OSabcd EFABDCabdc 
   conclusion: ETABCabc 
EFsymmetric
   hypotheses: EFABCDabcd 
   conclusion: EFabcdABCD 
EFtransitive
   hypotheses: EFABCDabcd EFabcdPQRS 
   conclusion: EFABCDPQRS 
ETtransitive
   hypotheses: ETABCabc ETabcPQR 
   conclusion: ETABCPQR 
cutoff1
   hypotheses: BEABC BEabc BEEDC BEedc ETBCDbcd ETACEace 
   conclusion: EFABDEabde 
cutoff2
   hypotheses: BEBCD BEbcd ETCDEcde EFABDEabde 
   conclusion: EFABCEabce 
paste1
   hypotheses: BEABC BEabc BEEDC BEedc ETBCDbcd EFABDEabde 
   conclusion: ETACEace 
deZolt1
   hypotheses: BEBED 
   conclusion: NOETDBCEBC 
deZolt2
   hypotheses: TRABC BEBEA BEBFC 
   conclusion: NOETABCEBF 
paste2
   hypotheses: BEBCD BEbcd ETCDEcde EFABCEabce BEAMD BEBME BEamd 
   BEbme 
   conclusion: EFABDEabde 
paste3
   hypotheses: ETABCabc ETABDabd BECMD ORBEAMB|EQAM|EQMB BEcmd ORBEamb|EQam|EQmb 
   conclusion: EFACBDacbd 
paste4
   hypotheses: EFABmDFKHG EFDBeCGHML BEAPC BEBPD BEKHM BEFGL BEBmD 
   BEBeC BEFJM BEKJL 
   conclusion: EFABCDFKML 
\end{alltt}


	  


Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists