Sindbad~EG File Manager
\section*{Appendix}
\subsection*{Common Notions}
\begin{alltt}
equalitytransitive
hypotheses: EQAC EQBC
conclusion: EQAB
congruencetransitive
hypotheses: EEPQBC EEPQDE
conclusion: EEBCDE
equalityreflexive
hypotheses: none
conclusion: EQAA
congruencereflexive
hypotheses: none
conclusion: EEABAB
equalityreverse
hypotheses: none
conclusion: EEABBA
stability
hypotheses: NONEAB
conclusion: EQAB
equalitysub
hypotheses: EQDA BEABC
conclusion: BEDBC
\end{alltt}
\subsection*{Definitions}
\begin{alltt}
unequal {\em A and B are distinct points}
The definition of NEAB
is: NOEQAB
collinear {\em A, B, and C are collinear}
The definition of COABC
is: OREQAB|EQAC|EQBC|BEBAC|BEABC|BEACB
noncollinear {\em A, B, and C are not collinear}
The definition of NCABC
is: NEAB NEAC NEBC NOBEABC NOBEACB NOBEBAC
circle {\em X is the circle with center C and radius AB}
The definition of NEAB
is: For some X, CIXCAB
inside {\em P is inside the circle J of center C and radius AB}
The definition of CIJCAB ICPJ
is: For some XY, CIJCAB BEXCY EECYAB EECXAB BEXPY
outside {\em P is outside the circle J of center C and radius AB}
The definition of CIJCAB OCPJ
is: For some X, CIJCAB BECXP EECXAB
on {\em P is on the circle J of center C and radius AB}
The definition of CIJACD ONBJ
is: CIJACD EEABCD
equilateral {\em ABC is equilateral}
The definition of ELABC
is: EEABBC EEBCCA
triangle {\em ABC is a triangle}
The definition of TRABC
is: NCABC
ray {\em C lies on ray AB}
The definition of RAABC
is: For some X, BEXAC BEXAB
lessthan {\em AB is less than CD}
The definition of LTABCD
is: For some X, BECXD EECXAB
midpoint {\em B is the midpoint of AC}
The definition of MIABC
is: BEABC EEABBC
equalangles {\em Angle ABC is equal to angle abc}
The definition of EAABCabc
is: For some UVuv, RABAU RABCV RAbau RAbcv EEBUbu EEBVbv EEUVuv NCABC
supplement {\em DBF is a supplement of ABC}
The definition of SUABCDF
is: RABCD BEABF
rightangle {\em ABC is a right angle}
The definition of RRABC
is: For some X, BEABX EEABXB EEACXC NEBC
perpat {\em PQ is perpendicular to AB at C and NCABP}
The definition of PAPQABC
is: For some X, COPQC COABC COABX RRXCP
perpendicular {\em PQ is perpendicular to AB}
The definition of PEPQAB
is: For some X, PAPQABX
interior {\em P is in the interior of angle ABC}
The definition of IAABCP
is: For some XY, RABAX RABCY BEXPY
oppositeside {\em P and Q are on opposite sides of AB}
The definition of OSPABQ
is: For some X, BEPXQ COABX NCABP
sameside {\em P and Q are on the same side of AB}
The definition of SSPQAB
is: For some XUV, COABU COABV BEPUX BEQVX NCABP NCABQ
isosceles {\em ABC is isosceles with base BC}
The definition of ISABC
is: TRABC EEABAC
cut {\em AB cuts CD in E}
The definition of CUABCDE
is: BEAEB BECED NCABC NCABD
trianglecongruence {\em Triangle ABC is congruent to abc}
The definition of TCABCabc
is: EEABab EEBCbc EEACac TRABC
anglelessthan {\em Angle ABC is less than angle DEF}
The definition of AOABCDEF
is: For some UXV, BEUXV RAEDU RAEFV EAABCDEX
togethergreater {\em AB and CD are together greater than EF}
The definition of TGABCDEF
is: For some X, BEABX EEBXCD LTEFAX
togetherfour {\em AB,CD are together greater than EF,GH}
The definition of TTABCDEFGH
is: For some X, BEEFX EEFXGH TGABCDEX
tworightangles {\em ABC and DEF make together two right angles}
The definition of RTABCDEF
is: For some XYZUV, SUXYUVZ EAABCXYU EADEFVYZ
meet {\em AB meets CD}
The definition of MEABCD
is: For some X, NEAB NECD COABX COCDX
cross {\em AB crosses CD}
The definition of CRABCD
is: For some X, BEAXB BECXD
tarski\_parallel {\em AB and CD are Tarski parallel}
The definition of TPABCD
is: NEAB NECD NOMEABCD SSCDAB
parallel {\em AB and CD are parallel}
The definition of PRABCD
is: For some UVuvX, NEAB NECD COABU COABV NEUV COCDu COCDv NEuv
NOMEABCD BEUXv BEuXV
anglesum {\em ABC and DEF are together equal to PQR}
The definition of ASABCDEFPQR
is: For some X, EAABCPQX EADEFXQR BEPXR
parallelogram {\em ABCD is a parallelogram}
The definition of PGABCD
is: PRABCD PRADBC
square {\em ABCD is a square}
The definition of SQABCD
is: EEABCD EEABBC EEABDA RRDAB RRABC RRBCD RRCDA
rectangle {\em ABCD is a rectangle}
The definition of REABCD
is: RRDAB RRABC RRBCD RRCDA CRACBD
\end{alltt}
\subsection*{Axioms of betweenness and congruence}
\begin{alltt}
betweennessidentity
hypotheses: none
conclusion: NOBEABA
betweennesssymmetry
hypotheses: BEABC
conclusion: BECBA
innertransitivity
hypotheses: BEABD BEBCD
conclusion: BEABC
connectivity
hypotheses: BEABD BEACD NOBEABC NOBEACB
conclusion: EQBC
nullsegment1
hypotheses: EEABCC
conclusion: EQAB
nullsegment2
hypotheses: none
conclusion: EEAABB
5-line
hypotheses: EEBCbc EEADad EEBDbd BEABC BEabc EEABab
conclusion: EEDCdc
\end{alltt}
\subsection*{Postulates}
\begin{alltt}
extension
hypotheses: NEAB NECD
conclusion: For some X, BEABX EEBXCD
Pasch-inner
hypotheses: BEAPC BEBQC NCACB
conclusion: For some X, BEAXQ BEBXP
Pasch-outer
hypotheses: BEAPC BEBCQ NCBQA
conclusion: For some X, BEAXQ BEBPX
line-circle
hypotheses: CIKCPQ ICBK NEAB
conclusion: For some XY, COABX COABY ONXK ONYK
BEXBY
circle-circle
hypotheses: CIJCRS ICPJ OCQJ CIKDFG ONPK ONQK
conclusion: For some X, ONXJ ONXK
Euclid5
hypotheses: BErts BEptq BEraq EEptqt EEtrts NCpqs
conclusion: For some X, BEpaX BEsqX
\end{alltt}
\subsection*{Axioms for Equal Figures}
\begin{alltt}
congruentequal
hypotheses: TCABCabc
conclusion: ETABCabc
ETpermutation
hypotheses: ETABCabc
conclusion: ETABCbca ETABCacb ETABCbac ETABCcba
ETABCcab
ETsymmetric
hypotheses: ETABCabc
conclusion: ETabcABC
EFpermutation
hypotheses: EFABCDabcd
conclusion: EFABCDbcda EFABCDdcba EFABCDcdab EFABCDbadc
EFABCDdabc EFABCDcbad EFABCDadcb
halvesofequals
hypotheses: ETABCBCD OSABCD ETabcbcd OSabcd EFABDCabdc
conclusion: ETABCabc
EFsymmetric
hypotheses: EFABCDabcd
conclusion: EFabcdABCD
EFtransitive
hypotheses: EFABCDabcd EFabcdPQRS
conclusion: EFABCDPQRS
ETtransitive
hypotheses: ETABCabc ETabcPQR
conclusion: ETABCPQR
cutoff1
hypotheses: BEABC BEabc BEEDC BEedc ETBCDbcd ETACEace
conclusion: EFABDEabde
cutoff2
hypotheses: BEBCD BEbcd ETCDEcde EFABDEabde
conclusion: EFABCEabce
paste1
hypotheses: BEABC BEabc BEEDC BEedc ETBCDbcd EFABDEabde
conclusion: ETACEace
deZolt1
hypotheses: BEBED
conclusion: NOETDBCEBC
deZolt2
hypotheses: TRABC BEBEA BEBFC
conclusion: NOETABCEBF
paste2
hypotheses: BEBCD BEbcd ETCDEcde EFABCEabce BEAMD BEBME BEamd
BEbme
conclusion: EFABDEabde
paste3
hypotheses: ETABCabc ETABDabd BECMD ORBEAMB|EQAM|EQMB BEcmd ORBEamb|EQam|EQmb
conclusion: EFACBDacbd
paste4
hypotheses: EFABmDFKHG EFDBeCGHML BEAPC BEBPD BEKHM BEFGL BEBmD
BEBeC BEFJM BEKJL
conclusion: EFABCDFKML
\end{alltt}
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists