Sindbad~EG File Manager
����; � TeX output 2007.01.24:1951� �����Q`@�������'`@���%��
src:35ccc.tex�D��t G� G� cmr17�Constructivit��qy���V,��TComputabilit�y�,��Tand�the�Con��qtin�uum�� ������ �7��X�Q cmr12�Mic��rhael��Beeson������+�N� ff cmbx12�Abstract�����
src:38ccc.tex�K�`y
cmr10�The��nature�of�the�con���tin�uum��has�long�b�Geen�an�imp�ortan���t�issue�in�the�founda-�� �tions��dof�mathematics.�It�pla���y�ed��dan�imp�Gortan���t�role�in�the�w�ork�of�Dedekind,�W��*�eyl,���and���Brou���w�er,�as�w�ell�as�early�axiomatic�geometers.�When�recursiv�e�function�the-���ory�$�w���as�dev�elop�Ged,�it�w�as�immediately�applied�to�the�con�tin�uum,�via�T��*�uring's���\computable"��;n���um�b�Gers.�But�then�the�construction�of�\singular�co�v�ers"�sho�w�ed,���it�I�seemed,�that�the�recursiv���e�reals�had�measure�zero!�Do�Ges�this�mean�that�w�e���ha���v�e�:\to�c���ho�Gose�b�et���w�een�:\constructiv�e�reasoning�consisten�t�with�Ch�urc�h's�thesis���and���a�unit�in���terv��q�al�of�p�Gositiv�e�measure?�Bishop's�measure�theory�sa�v�ed�us�from���the��
horns�of�this�dilemma{or�did�it�just�sw���eep�the�dicult�y�under�the�carp�Get?�W��*�e���study�
�the�relationship�b�Get���w�een�
�Bishop's�measure�theory�and�the�recursiv���e�singu-���lar�6Gco���v�ers;�as�a�result�of�this�analysis,�w�e�iden�tify�a�logical�principle�FP�6?(fullness���principle).�6�FP�6sis�justied�b���y�the�informal�principle�of�geometric�completeness,���and��nformally�refutes�Ch���urc�h's��nthesis�CT.�W��*�e�sho���w�that�FP��is�a�constructiv�e���principle�k-in�that�it�is�conserv��q�ativ���e�o�v�er�in�tuitionistic�arithmetic�HA�k'and�has�the���n���umerical���existence�and�disjunction�prop�Gerties.�Returning�to�the�original�philo-���sophical�=Rquestions�ab�Gout�the�nature�of�the�geometric�con���tin�uum,�=Rw�e�ask�what���the���origin�of�our�in���tuitions�is.�W��*�e�sho�w�that�mo�Gdern�ph�ysics�supp�Gorts�the�view�of���Helmholtz���on�this�matter:�b�Gelo���w�the�Planc�k�length�space�is�not�co�Gordinatizable���in�UUthe�usual�w���a�y��*�.��!č�In���tro�s3duction����
src:46ccc.tex�This���pap�Ger�concerns�the�notions�of�existence�and�constructiv���e�existence�as�they���apply�UUto�real�n���um�b�Gers.�UUThe�follo���wing�t�w�o�principles�ha�v�e�often�b�Geen�considered:������
src:48ccc.tex��"V
cmbx10�(Ch��9urc�h's�;thesis)����� ':
cmti10�Every��mr��}'e�al�numb�er�c�an�b�e�c�ompute�d�to�any�desir�e�d�ap-���pr��}'oximation���by�an�algorithm.������
src:50ccc.tex�(Geometric���Completeness)�v�The�� p��}'oints�on�a�line�se�gment�c�orr�esp�ond�to���r��}'e�al���numb�ers�in�an�interval.������
src:52ccc.tex�These���t���w�o�statemen�ts�seem�to�b�Ge�dieren�t:�the�rst�one�expresses�an�in�tu-���ition��ab�Gout��p��}'articular��real�n���um�b�ers.��Eac�h�real�n�um�b�Ger�that�someone�migh�t�\giv�e"���to� jus�is�only�\giv���en"�if�w�e�are�told�ho�w�to�compute�it.�The�second�statemen�t,���on��the�other�hand,�expresses�an�in���tuition�ab�Gout�the��totality��of�real�n�um�b�Gers�(in��� �� �|1���� *�Q`@�������'`@��������an�^in���terv��q�al).�The�geometric�line�segmen�t�m�ust�b�Ge�\the�sum�of�its�parts"{it�is�� �comp�Gosed���of�p�oin���ts,�so�there�m�ust�b�Ge�\enough"�p�oin���ts�to�ll�up�the�line,�without���lea���ving�ySan�y�\gaps".�Is�it�really�p�Gossible�that�all�those�gaps�are�lled�up�with���computable�UUn���um�b�Gers?������
src:57ccc.texAll�*5the�notions�in�these�principles�(computation,�algorithm,�real�n���um�b�Ger,���geometric��line�segmen���t)�are�notions�ab�Gout�whic�h�w�e�ha�v�e�strong�in�tuitions,�but���whic���h��.required�Herculean�lab�Gors�of�mathematics�to�bring�to�their�mo�dern�precise���form���ulations.�ҨEv�en�b�Gefore�these�concepts�w�ere�made�precise,�p�Geople�suc�h�as�W��*�eyl���and��bBrou���w�er�w�ere�uncomfortable,�but�with�the�adv�en�t�of�T��*�uring�mac�hines�the���matter��oreac���hed�a�sharp�Ger�form�ulation.�F��*�rom�the�classical�p�Goin�t�of�view,�there�are���only��coun���tably�man�y�computable�real�n�um�b�Gers,�so�no,�not�all�the�gaps�can�b�e���lled��nwith�computable�n���um�b�Gers.��nOf�course,�the�standard�constructivist�reply�is���that�0the�computable�n���um�b�Gers�0are�not�constructiv���ely�en�umerable,�so�y�ou�cannot���p�Goin���t���out�an�unlled�gap.�But�is�this�a�fully�satisfactory�answ�er?�One�migh�t���compare�"�that�answ���er�to�sa�ying,�after�sw�eeping�the�dirt�under�the�carp�Get,�that���y���ou�UUcannot�p�Goin�t�it�out.������
src:59ccc.texIn�UUthis�pap�Ger,�w���e�will�examine�this�question�more�closely��*�.��!č�The�ffcon���tin�uum�in�the�history�of�logic�����
src:63ccc.tex�I�will�b�Gegin,�not�with�the�w���ell-kno�wn�con�tributions�of�Dedekind�and�Can�tor,�but���with�UUanother�historical�stream,�from�the�dev���elopmen�t�UUof�geometry��*�.������
src:65ccc.texGeometry�(�w���as�in�attendance�at�the�birth�of�logic�in�Euclid's��Elements�,�and���the��0nature�of�the�con���tin�uum��0w�as�already�giving�philosophers�dicult�y�b�Gefore�that���(Zeno's���parado���x).�In�the�middle�of�the�nineteen�th�cen�tury��*�,�Staudt�(�Ge��}'ometrie��der���L��}'age�B1847�)�to�Gok�steps�to���w�ards�a�mo�dern�deductiv���e�geometry;�but�F��*�elix�Klein�ob-���serv���ed�]
in�1873�the�diculties�ab�Gout�con�tin�uit�y�in�Staudt's�treatmen�t,�complaining���of���the�necessit���y�\to�conceiv�e�p�Goin�ts,�also�if�these�are�dened�b�y�means�of�an�in-���nite�[�pro�Gcess,�as�already�existing."�The�second�half�of�the�nineteen���th�cen�tury���sa���w�Mhthe�dev�elopmen�t�of�an�increasingly�rigorous�axiomatic�approac�h�to�geom-���etry��*�,�~�for�example�P���asc�h's�~��V��;�orlesung������ub��}'er��eneuer�e�Ge�ometrie�~��app�Geared�in�1882;���but���as�F��*�reuden���thal�observ�es�in�his�fascinating�history�([�8�� ],�pp.�106{107),�P�asc�h���had�Hna�n���um�b�Ger�Hnof�Italian�con���temp�oraries:�V��*�eronese,�Enrique,�Pieri,�P���adoa.�These���dev���elopmen�ts��set�the�stage�for�the�app�Gearance�in�1899�of�Hilb�ert's��Grund� ��lagen���der��7Ge��}'ometrie����[�9�� ].�����^��ٓ�R cmr7�1����e�As�F��*�reuden���thal�sa�ys,�the�opinion�is�widespread�that�it�w�as���Hilb�Gert��
who�rst�ga���v�e��
a�completely�deductiv���e�logical�system�for�Euclidean�geom-���etry��*�,��kin�whic���h�nothing�w�as�left�to�in�tuition.�But�in�view�of�the�ac�hiev�emen�ts�of���his�UUpredecessors�just�men���tioned,��what���was�ther��}'e�left�for�Hilb�ert�to�do?����^��2��������
src:72ccc.tex�F��*�reuden���thal��Bansw�ers�this�rhetorical�question�as�follo�ws:�F��*�rom�an�tiquit�y�an���axiom�gw���as�an�eviden�t�truth,�that�could�not�b�Ge�pro�v�ed,�but�also�needed�no�pro�Gof:��X-� ff ��D� J=�����"5��-:��Aa� cmr6�1����L��|{Y cmr8�Quite��p�<rossibly�they�also�in
uenced�the�w�Îork�of�P�eano,�who�in�tro�<rduced�mo�dern�logical�� � �notation��Xa�few�y�Îears�later.�� �>�����"5��-:�2����LܻW��J�as��Xblieb�f�<r����ur�Hilb�ert�eigen�Îtlic�h��Xno�c�h��Xzu�tun?�[�8��@],�p.�110.��� �� �|�2���� ;�Q`@�������'`@�������� �
src:74ccc.tex�Whether���one�b�<reliev�Îed�with�Kan�t�that�axioms�arose�out�of�pure�con�templation,�or�� �� with���Helmholtz�that�they�w�Îere�idealizations�of�exp�<rerience,�or�with�Riemann�that���� they�m�w�Îere�h�yp�<rothetical�judgemen�ts�ab�<rout�realit�y��J�,�in�an�y�ev�en�t�nob�<ro�dy�m�doubted���� that���axioms�expressed�truths�ab�<rout�the�prop�erties�of�actual�space�and�w�Îere�to�b�e���� used��Xfor�the�in�Îv�estigation��Xof�prop�<rerties�of�actual�space.��?G����
src:77ccc.tex�Hilb�Gert's���b�o�ok,�on�the�other�hand,�b�egins�with�\Wir�denk���en�uns�drie�v�er-���sc���hiedene��2Systeme�v�on�Dingen:�die�Dinge�des�ersten�Systems�nennen�wir��Punkte�;���die�s/dingen�des�zw���eiten�Systems�nennen�wir��Ger��}'ade��
�b>