Sindbad~EG File Manager

Current Path : /usr/home/beeson/public_html/michaelbeeson/research/papers/
Upload File :
Current File : /usr/home/beeson/public_html/michaelbeeson/research/papers/LambdaLogicExtras.dvi

����;� TeX output 2004.01.04:2254�����������`���������b��d���src:11LambdaLogicExtras.tex���N�G�cmbx12�Supplemen��u�t�z�to�Lam�b��=da�Logic��#�Ѝ��4"��-�
cmcsc10�Michael���Beeson������2��K�cmsy8�������zYA�+�':

cmti10�San���Jos�����$�e�State�University,�San�Jos��!e,�CA,�USA��,����3��src:31LambdaLogicExtras.tex�4��N�cmbx12�Abstract��
���4�5K�`y
�3
cmr10�This�9do�M�cumen��!t�con�tains�some�explanations�and�pro�M�ofs�that�had�to�b�e��
����4omitted��9from�(�4��y�)�to�meet�the�length�limitation.�It�is�mean��!t�to�b�M�e�read����4only��fas�a�supplemen��!t�to�(�4��y�).������4�src:33LambdaLogicExtras.texKEYW��!ORDS:���automated�deduction,�computer�pro�M�ofs,�unication,�second����4order,��fOtter��R��#ҵ����7��N�ffcmbx12�1.��*�1Predicate�ffAbstraction��p獑�src:36LambdaLogicExtras.tex�X�Qcmr12�Should�5{w��re�allo�w�the�formation�of�new�predicates�b�y����g�cmmi12��-abstraction,�suc�h�as������y�n9:���P��ƹ(�x;�y��)?��This�is�used�in�Otter2�(�5���).�It�is,�ho��rw�ev�er,��not�necessary�to�build����this�w�in��rto�the�syn�tax�of�lam�b�S�da�logic.�Indeed,�omitting�it�oers�greater�
exibilit�y:����w��re�O�can�then�selectiv�ely�allo�w�predicate�abstraction�o�v�er�certain�predicates,�while����not���allo��rwing�it�o�v�er�others.�T��Vo�allo�w�predicate�abstraction�o�v�er��P��ƹ,�include�a�func-����tion�I�sym��rb�S�ol��������2cmmi8�P��[Z�and�an�axiom�expressing�that������P���is�the�c��rharacteristic�function����of�꨿P��ƹ.������5.��0�Pro�s3of�ffof�Theorem�5.3��p獑�src:47LambdaLogicExtras.tex�W��Ve��rep�S�eat�the�statemen��rt�of�the�theorem�and�then�giv�e�a�complete�pro�S�of;�(�4���)����giv��res��only�a�sk�etc�h.��%j�����Theorem���5.3�(Axioma��32tiza�tion���of�first-order�theorems):���r�~�src:50LambdaLogicExtras.tex�8���@cmti12�L��ffet�+E�T���b�e�a����rst��or��ffder�the�ory,�and�let��A��b�e�a�rst�or�der�sentenc�e.�Then��T��|�pr�oves��A��in����lamb��ffda�w{lo�gic�if�and�only�if�for�some�p�ositive�inte�ger��n�,��T�A�plus�\ther�e�exist��n�����distinct�35things"�pr��ffoves��A��in�rst�or�der�lo�gic.�����src:54LambdaLogicExtras.texPr��ffo�of�.�iRFirst�supp�S�ose��A��is�pro��rv��X�able�from��T��plus�\there�exist��n��distinct�things".����W��Ve��Osho��rw��A��is�pro�v��X�able�in�lam�b�S�da�logic,�b�y�induction�on�the�length�of�the�pro�S�of����of��X�A�.�Since�lam��rb�S�da�logic�includes�rst�order�logic,�the�induction�step�is�rivial.��7"�����#g��^��O!�cmsy7�����(�K�`y

cmr10�Researc���h�UUsupp�Gorted�b�y�NSF�gran�t�n�um�b�Ger�CCR-0204362.������*������`�������Lam��!b�M�da��fLogic�������������F��Vor�p%the�basis�case�w��re�m�ust�sho�w�that�lam�b�S�da�logic�pro�v�es�\there�exist��n��distinct�����things"���for�eac��rh�p�S�ositiv�e�in�teger��n�.�The�classical�constructions�of�n�umerals�in����lam��rb�S�da��calculus�pro�duce�innitely�man��ry�distinct�things.�Ho�w�ev�er,�it�m�ust�b�S�e����c��rhec�k�ed��that�their�distinctness�is�pro��rv��X�able�in�lam�b�S�da�logic.�Dening�n�umerals����as�U�on�p.�130�of�(�1���)�w��re�v�erify�b�y�induction�on��n��that�for�all��m�^<�n�,�U��!",�
cmsy10�d�m�e�6�=��d�n�e�����is�Knpro��rv��X�able�in�lam�b�S�da�logic.�If��m��<�n�쌹+�1�Knthen�either��m���=��n�,�Knin�whic�h�case�w�e����are��-done�b��ry�the�induction�h�yp�S�othesis,�or��m��̹=��n�.��-So�what�has�to�b�e�pro��rv�ed��-is����that��hfor�eac��rh��n�,�lam�b�S�da�logic�pro�v�es��d�n�e�UR6�=��d�n��K�+�1�e�.��hThis�in�turn�is�v�eriable�b�y����induction��on��n�.����!���src:63LambdaLogicExtras.texCon��rv�ersely��V,���supp�S�ose�that��A��is�not�pro��rv��X�able�in��T�-��plus�\there�exist��n��distinct����things"��Mfor�an��ry��n�.�Then�b�y�the�completeness�theorem�for�rst�order�logic,�there����is��an�innite�mo�S�del��M���of��:�A�;�indeed�w��re�ma�y�assume�that��M���has�innitely����man��ry�A�elemen�ts�not�denoted�b�y�closed�terms�of��T��ƹ.�W��Ve�will�sho�w�that��M����can����b�S�e�
Hexpanded�to�a�lam��rb�da�mo�del����x��gi^������M����z�satisfying�the�same�rst�order�form��rulas,�b�y����dening��warbitrarily�the�required�op�S�eration������2���u{�on��M�@�-terms,�and�then�inductiv��rely����dening�	�relations��E���(�x;���y�n9�)�and��Ap����M�����to�serv��re�as�the�in�terpretations�of�equalit�y����and�꨿Ap��in����x��D�^������M������.����!���src:70LambdaLogicExtras.texT��Vo�XLdo�this�w��re�dene�the�relation��Ap����M���<�and�a�binary�relation��E�c�on��M��0�b�y�sim�ul-����taneous�1�induction.��Ap����M�����will�serv��re�as�the�in�terpretation�of��Ap��and��E�姹will�serv�e�as����the�Hin��rterpretation�of�equalit�y��V.�����2�y���[h�Since��M�U,�is�innite�w�e�can�dene�an�elemen�t�0�and����a�^�pairing�function��h�a;���b�i��on��M����in�suc��rh�a�w�a�y�that�the�in�terpretations�of�the�losed����terms�)%of��T���are�nev��rer�pairs,�and�0�is�not�a�pair.�Dene��<�URa;���b;�c�>�=�<�a;�<�b;�c�>>�,����etc.���Dene�the�successor�of��x��to�b�S�e��s�(�x�)�UR=�<��0�;���x�>�,���and�dene�the�\n��rumeral"���Ӏ����m�������inductiv��rely�e�b�y���n������0���lJ=�&�0�and���n�Ŝ������m����+�1���',7=��s�(���3����m���
G�).�Henceforth�w��re�drop�the�bars,�writing����for��example��h�1�;���k�g�i��instead�of��h���n�����1�����;����W��Qƹ��*����k������i�.�An�elemen��rt�of�the�form��<�aC�1�;�j��;�k��`>��will�b�S�e����used��}as�an�\index"�of�the��k�g�-th�function�sym��rb�S�ol�of�arit�y��j�`P�in��T��ƹ,�whic�h�w�e�denote����b��ry�꨿f���O���G��j��	�k����	�.����!���src:83LambdaLogicExtras.texT��Vuples�\�are�dened�from�pairs�b��ry��h�x�����|{Ycmr8�1����;����:�:�:��ʜ;���x����n�+1�����i��O�=��hh�x���̽1���;����:�:�:��ʜ;���x����n���P�i�;�x����n�+1�����i�.�\�The�����memb��ffers�bs�of�a�tuple��h�x���̽1����;����:�:�:��ʜ;���x����n��	
ùare�the��x����i���M�for��i�UR�=�1�;��:�:�:��ʜ;�n�.�bsWhen��y�Ь�and��w���are�t��rw�o����tuples�O�of�length�at�least��m��w��re�write��E����m��Ĺ(�y�n9;���w�R��)�for�the�conjunction�of�the�form�ulas�����E���(�y����i��dڿ;���w����i���)��for��i�UR���m�.����!���src:88LambdaLogicExtras.texT��Vo��wpro�S�duce�a���-mo�del�w��re�m�ust�dene�an�op�S�eration������2�����,�whic�h�tak�es�a�v��X�ariable����and���an��M�@�-term.�An��M��-term�(as�explained�in�(�1���),�p.�86��.�),�is�a�term�with����\parameters��#from��M�@�";�more�precisely��V,�a�closed�term�in�a�language�con��rtaining�a����constan��rt��ҿc����a��ӡ�for�eac�h�elemen�t��a��of��M�@�.�A���con�v�enien�t�notation�for��M�@�-terms�is��t�[�y�n9�],����where��ʿy��is�a�tuple�of�elemen��rts�of��M�ڮ�whose�length�is�the�n�um�b�S�er�of�free�v��X�ariables����of�T��t�.�This�means�the�follo��rwing:�if��x���̽1����;����:�:�:��ʜ;���x����n��	��are�the�free�v��X�ariables�of��t�,�in�order����of��"their�o�S�ccurrence,�then��t�[�y�n9�]�is��t�[�x����i���,�:=�UR�c����y��8:�;�cmmi6�i�����].�W��Ve�also�need�the�follo��rwing�notation:�����t�[�y�n9;���x�]�3�where��x��is�a�v��X�ariable,�and��y����is�a�tuple�of�elemen��rts�of��M�t��whose�length�is�the����n��rum�b�S�er��of�free�v��X�ariables�of��t��dieren��rt�from��x�,�means�the�follo�wing:�if��x���̽1����;����:�:�:��ʜ;���x����n���UT�����#�X��^��y����(�If��Ione�insists�on�in���terpreting�equalit�y�as�iden�tit�y�instead�of�b�y�an�equiv��q�alence�relation,�one����ma���y�UUuse�the�equiv��q�alence�classes�of��
�b>

cmmi10�E���as�the�elemen�ts�of�the�mo�Gdel.�����
�������`��������M.��fJ.�Beeson�������������are���the�free�v��X�ariables�of��t��dieren��rt�from��x�,�in�order�of�their�o�S�ccurrence,�then��t�[�y�n9�]�����is�꨿t�[�x����i���,�:=�UR�c����y��8:�i�����].�Note�that��x��ma��ry�or�ma�y�not�o�S�ccur�free�in��t�.����!���src:98LambdaLogicExtras.texThe��op�S�eration������2������is�giv��ren�b�y����� ݿ���������(�x;���t�[�y�n9;�x�])�UR:=�<��2�;���j��;������d��G�t�����e��G �;�y�Ë>�����src:100LambdaLogicExtras.tex�where�~��y���is�a�tuple�whose�length�is�the�n��rum�b�S�er�~�of�free�v��X�ariables�of��x:���t�,�and��x������is�ԏthe��j��ӹ-th�v��X�ariable,�and�����2�d����t����2�e���is�ԏthe�(n��rumeral�for�the)�G�� odel�n�um�b�S�er�of�the�closed����term�s��t�.�The�denitions�of��Ap�,��E���,�and�the�in��rterpretation��t�[�y�n9�]����M��
���of�eac�h��M�@�-term�����t�[�y�n9�]���are�giv��ren�in�one�sim�ultaneous�inductiv�e�denition.�The�inductiv�e�conditions����are��as�follo��rws.�In�(iii)�and�(iv),��m��is�the�n�um�b�S�er�of�free�v��X�ariables�of��t�.��`��!���src:109LambdaLogicExtras.tex(i)�꨿E���(�x;���y�n9�)�if��x�UR�=��y��.����!���src:111LambdaLogicExtras.tex(ii)�꨿E���(�����2�����(�x;���t�[�y�n9;�x�])�;�����2����(�z���;�t�[�x�UR�:=��z��][�y�n9�])).����!���src:113LambdaLogicExtras.tex(iii)�꨿Ap����M��	��(�����2�����(�x;���t�[�y�n9;�x�])�;�r����M���)�UR=��t�[�x��:=��r�S��][�y�n9�]����M���.����!���src:115LambdaLogicExtras.tex(iv)��p�E���(�����2�����(�x;���t�[�y�n9;�x�])�;�����2����(�x;�s�[�w�R�;�x�])��pif��E���(�t�[�x�UR�:=��a�][�y�n9�]����M��	��;���s�[�x��:=��a�][�w����M���),��pand��E����m��Ĺ(�y�n9;���w�R��)����where�꨿a��is�a�the�rst�constan��rt�not�o�S�ccurring�in��t��or��s�.����!���src:118LambdaLogicExtras.tex(v)�꨿E���(�Ap����M��	��(�a;���b�)�;�Ap����M���(�c;�d�))��if��E���(�a;���c�)�and��E��(�b;���d�).����!���src:120LambdaLogicExtras.tex(vi)�꨿Ap�(�a;���b�)����M���B�=�UR�Ap����M��	��(�a����M���;�b����M���).����!���src:122LambdaLogicExtras.tex(vii)�z
�E���(�f�G��(�t�[�y�n9�])����M��	��;���f��(�s�[�w�R��])����M���)�z
if��E���(�t�[�y�n9�]����M���;���s�[�w�R��]����M���),�and�similarly�for�sev��reral�v��X�ari-����ables�꨿x�.����!���src:124LambdaLogicExtras.tex(viii)��(�x:���t�[�y�n9;�x�])����M���B�=�UR�����2�����(�x;�t�[�y�;�x�]).����!���src:126LambdaLogicExtras.tex(ix)�꨿f�G��(�x�)����M���B�=�UR�f����M��	��(�x����M���)�and�similarly�for�sev��reral�v��X�ariables��x�.����!���src:128LambdaLogicExtras.tex(x)��(�c����a��Ϲ)����M���B�=�UR�a��where��c����a���w�is�the�constan��rt�for��a�.����!���src:130LambdaLogicExtras.tex(xi)�꨿E���(�a;���c�)�if��E��(�a;���b�)�and��E��(�b;���c�).����!���src:133LambdaLogicExtras.texSince�X��E�
�and��Ap��o�S�ccur�only�p�ositiv��rely�in�these�clauses,�this�is�a�legitimate����inductiv��re���denition.�W��Ve�in�terpret�equalit�y�in��M�Ӛ�as�the�relation��E���.�F��Vor�eac�h����predicate�꨿P��n�of�arit��ry��n��in�the�language�of��T��ƹ,�w�e�dene�a�relation����x����^������P���	�on��M�+��b�y�������x��mJ^�����j��P���s٣�(�x���̽1����;����:�:�:��ʜ;���x����n���P�)�UR:=��M��6�j����=��
xܿP��ƹ(�y���̽1���;����:�:�:��ʜ;���y����n���P�)����^��E����n���(�x;���y�n9�)�����src:137LambdaLogicExtras.texand��w��re�dene����x��D�^������M������j����=��
xܿP��ƹ(�x���̽1����;����:�:�:��ʜ;���x����n���P�)�if�and�only�if����x����^������P���
C�(�x���̽1���;����:�:�:��ʜ;���x����n���P�).�����!���src:139LambdaLogicExtras.texW��Ve�hstart�with�the�follo��rwing�lemma:�if��E���(�r�;���q�n9�)�then��E���(�t�[�x�*̹:=��r�S��]�;�t�[�x��:=��q�n9�])�hfor����terms���t�,��q�n9�,�and��r�S��.�This�is�pro��rv�ed��b�y�induction�on�the�complexit�y�of�the��M�@�-term�����t�.���When��t��b�S�egins�with����or��Ap�,�the�corresp�onding�induction�step�follo��rws�from����(iv)�`�and�(v).�When��t��b�S�egins�with�a�function�sym��rb�ol��f�G��,�w��re�use�(vii).�When��t��is����atomic,�u'either�it�is�a�constan��rt��c����a��x��for�an�elemen�t��a�UR�=��y���̽1��5+�of�u'�M�@�,�in�whic�h�case�there����is�Qnothing�to�pro��rv�e,�Qor�else�it�is�a�v��X�ariable,�in�whic��rh�case�w�e�ha�v�e�to�pro�v�e�that�����E���(�r��r;���q�n9�)��from�the�assumption��E��(�r��r;���q�n9�),�whic�h�is�immediate.����!���src:147LambdaLogicExtras.texW��Ve���next�v��rerify�the�substitutivit�y�of�equalit�y��V,�namely:�if��E���(�r�;���s�)�and����x��	�^������M���Z��j����=������A�[�x��H�:=��r�S��]�Xthen����x��	�0^������M����A�j����=���ҿA�[�x��H�:=��s�],�Xwhere��A��is�a�form��rula�of�lam�b�S�da�logic�with����constan��rts�S$for�elemen�ts�of��M�@�.�W��Ve�pro�v�e�this�b�y�induction�on�the�complexit�y�of��A�.����Since�6Rsubstitution�for�free�v��X�ariables�comm��rutes�with�the�logical�connectiv�es�and����quan��rtiers,�p�only�the�case�of�atomic��A��needs�a�pro�S�of.�If��A��is�an�equalit�y��t�9��=��q�n9�,����then�r�A�[�x����:=��r�S��]�is��t�[�x��:=��r�S��]�=��q�n9�[�x��:=��r��]�rand��A�[�x����:=��s�]�ris��t�[�x����:=��s�]�=��q�n9�[�x��:=��s�].�rBy������������`�������Lam��!b�M�da��fLogic�������������the�o lemma�w��re�ha�v�e��t�[�x�UR�:=��r�S��]�=��t�[�x��:=��s�]�o in��M�@�,�and��q�n9�[�x�UR�:=��r��]�=��q�n9�[�x��:=��s�].�o Assume��������x��Z!^������M���%�<�j����=��
xܿA�[�x�UR�:=��r�S��].���Then�b��ry�(xi)�w�e�ha�v�e����x���
^������M����(�j����=��
xܿt�[�x�UR�:=��s�]�=��q�n9�[�x��:=��s�].���The�remaining����case�]is�when��A��is�an�atomic�form��rula��P��ƹ(�x�)�(�x��can�b�S�e�sev�eral�v��X�ariables.)�This�is����tak��ren��care�of�b�y�the�denition�of����x����^������P���	�ab�S�o�v�e.����!���src:157LambdaLogicExtras.texBecause�Aof�(ii)�and�(iii),�axioms�(����)�and�(���O�)�are�satised.�No��rw�to�v�erify�axioms����(���s�).��gLet��t�[�y�n9�]�b�S�e�an��M�@�-term,�i.e.�a�term�with�constan��rts�for�elemen�ts��y���of��M�����substituted��ifor�its�free�v��X�ariables.�Supp�S�ose����x��/�^������M���ɥ�j����=��
x��8�x�(�t�[�y�n9�]�x�UR�=��s�[�y��]�x�).��iThen�let��c��b�S�e����the��rst�constan��rt�not�o�S�ccurring�in��t��or��s�;�w�e�ha�v�e����x���1^������M����'�j����=�����t�[�x�~-�:=��c�]�=��s�[�x��:=��c�].����Then��b��ry�(iv),�w�e�ha�v�e����x��D�^������M������j����=��
xܿx:���t�[�y�n9�]�UR=��x:�s�[�y�n9�].��Hence�(���s�)�holds�in��M�@�.����!���src:164LambdaLogicExtras.texW��Ve�	ha��rv�e�no�w�pro�v�ed�that����x��e*^������M������is�a�mo�S�del�of�lam�b�S�da�logic.�W��Ve�still�m�ust�pro�v�e����it��satises�the�theory��T�y¹in�rst�order�logic.�This�follo��rws�from�the�follo�wing����lemma:�	�F��Vor�eac��rh��M�@�-form�ula��A�(�x���̽1����;����:�:�:��ʜ;���x����n���P�)�with��n��parameters�from��M�@�,�w�e�ha�v�e�������x��Z!^������M���&s.�j����=��
�οA�(�x�)�5=if�and�only�if�there�exists��y��v�with��E����n���P�(�x;���y�n9�)�and��M�(�j����=���A�(�y�n9�).�T��Vo�pro��rv�e����the��Jlemma:�The�case�when��A��is�an�atomic�form��rula��P��ƹ(�x�)�is�true�b�y�denition�of�������x����^������P���4��.��>The�case�of�an�atomic�form��rula��t�UR�=��q�aw�follo�ws��>from�what�has�b�S�een�pro�v�ed�ab�S�o�v�e.����The���pro�S�of�is�completed�b��ry�induction�on�the�complexit�y�of��A�;�the�quan�tiers�do����not��oer�an��ry�dicult�y�since�the�carrier�sets�of��M�	�and����x��	#&^������M���0�are�the�same.�That����completes��the�pro�S�of�of�the�theorem.��$����9.��*�1Lam���b�s3da�ffCompleteness�for�LPT������src:176LambdaLogicExtras.tex�Completeness�e�of�rst-order�LPT�eaw��ras�pro�v�ed�in�(�3���),�b�y�reduction�of�LPT�eato�ordi-����nary���rst�order�logic.�Inciden��rtally��V,�completeness�w�as�also�pro�v�ed�for�in�tuitionistic����LPT,��whic��rh�do�S�es�not�concern�us�here.����!���src:180LambdaLogicExtras.texHere��w��re�pro�vide�the�pro�S�of�of�theorem�9.1�of�(�4���).��������Theorem���9.1�(Lambd���a�Completeness�Theorem�f�or�LPT):���twJ�src:182LambdaLogicExtras.tex�L��ffet����T�7q�b�e�a����c��ffonsistent�35the�ory�in�p�artial�lamb�da�lo�gic.�Then��T���has�a�p�artial�lamb�da�mo�del.�����src:186LambdaLogicExtras.texPr��ffo�of�.���Again�w��re�imitate�the�Henkin�pro�S�of�of�completeness�for�rst�order�logic.�If�����T�G�do�S�es��not�con��rtain�innitely�man�y�constan�t�sym�b�S�ols,�w�e�b�S�egin�b�y�adding�them;����this��
do�S�es�not�destro��ry�the�consistency�of��T�>ӹsince�in�an�y�pro�S�of�of�con�tradiction,����w��re���could�replace�the�new�constan�ts�b�y�v��X�ariables�not�o�S�ccurring�elswhere�in�the����pro�S�of.�.2W��Ve�construct�the�\canonical�structure"��M�o�for�a�theory��T��ƹ.�The�elemen��rts����of����M�g�are�equiv��X�alence�classes�of�closed�terms�of��T�aI�under�the�equiv�alence�relation����of�ɟpro��rv��X�able�equalit�y:��t������r�-�i�ɟ�T�r��`��t��=��r�S��.�But�no��rw,�w�e�tak�e�only�those�closed����terms�v�t��for�whic��rh��T���pro�v�es��t�UR�#�;�that�ensures�the�v��X�alidit�y�of�the�axiom��x�UR�=��x�,�v�and����of���the�axioms��x�UR�#��for�v��X�ariables��x��and�of�the�axioms��c��#��for�constan��rts��c�.�Let�[�t�]�b�S�e����the��Dequiv��X�alence�class�of��t�.�W��Ve�dene�the�in��rterpretations�of�constan�ts,�function����sym��rb�S�ols,��and�predicate�sym�b�S�ols�in��M�+��as�follo�ws:���������A�c�����M�������s��=�������H[�c�]����������t��f��G�����M��
��([�t���̽1����]�;����:�:�:��ʜ;����[�t����n���P�])������s�=�������H[�f�G��(�t���̽1����;����:�:�:��ʜ;���t����n���P�)]���������S�P���Ɵ���M��%��([�t���̽1����]�;����:�:�:��ʜ;����[�t����n���P�)]������s�=�������H[�P��ƹ(�t���̽1����;����:�:�:��ʜ;���t����n���P�)]�������3Ǡ�����`��������M.��fJ.�Beeson�������������src:202LambdaLogicExtras.tex�In�athis�denition,�the�righ��rt�sides�dep�S�end�only�on�the�equiv��X�alence�classes�[�t����i��dڹ]�(as�����sho��rwn�0Lin�(�6���),�p.�44).�The�atomic�form�ula��t���#��is�satised�in��M�q0�if�and�only�if�����T��չpro��rv�es�!�t����#�.�It�follo��rws�b�y�induction�on�the�complexit�y�of�the�closed�rst-order����term�5z�t��that�if��T��@�pro��rv�es�5z�t�UR�#��then�the�in��rterpretation��t����2�M���j�of��t��in��M�v^�is�the�equiv��X�alence����class��[�t�]�of��t�.�The�strictness�axiom�for�rst�order�function�sym��rb�S�ols�is�used�in�the����induction��step,�so�this�do�S�es�not�apply�to�terms�con��rtaining��Ap��unless�w�e�ha�v�e����strictness��for��Ap�.����!���src:209LambdaLogicExtras.texExactly���as�in�(�6���)�one�then�v��reries�that��M���is�a�rst�order�mo�S�del�of��T�av�in�the�sense����of��LPT.�Th��rus�the�completeness�theorem�for�rst�order�LPT��(with�strictness)�is����pro��rv�ed��(again).����!���src:212LambdaLogicExtras.texT��Vo�Dturn��M�Q(�in��rto�a���-mo�S�del,�w�e�m�ust�dene������2�����(�x;���t�),�where��t��is�an��M�@�-term,�i.e.�a����closed��term�with�parameters�from��M�@�.�The�\parameters�from��M��"�are�constan��rts�����c���߽[���t�q�n9�],��Swhere�[�q��]�is�the�equiv��X�alence�class�of�a�closed�term��q�M��of��T��ƹ.�If�[�t�]�is�the����equiv��X�alence�wclass�of�an��M�@�-term��t�,�let�[�t�]����2����{�b�S�e�a�closed�term�of��T��=�obtained�from��t�����b��ry�1]replacing�eac�h�constan�t��c���߽[���t�q�n9�]�b�y�some�closed�term��q����in�the�equiv��X�alence�class�[�q�n9�].����Whic��rh�[Pclosed�term�w�e�select�do�S�es�not�aect�the�equiv��X�alence�class�[�t�]����2�����.�In�other����w��rords,��[�t�]����2������is�a�w�ell-dened�op�S�eration�on�equiv��X�alence�classes.����!���src:219LambdaLogicExtras.texW��Ve�^dene������2�����(�x;���t�)�͈=�[�x:��[�t�]����2�����].�^Because�of�the�axiom��x:�t�͈�#�,������2�����(�x;�t�)�is�in-����deed�#�dened�for��M�@�-terms��t�.�W��Ve�m��rust�sho�w�that�the�v��X�alue�dep�S�ends�only�on�the����equiv��X�alence�)=class�[�t�].�Supp�S�ose��T���pro��rv�es�)=�t�s��=��s�.�Then�b��ry�axiom�(�xi�),��T���pro�v�es�����x:����[�t�]�UR=��x:��[�s�].����!���src:225LambdaLogicExtras.texW��Ve�)\v��rerify�that�the�axioms�of�partial�lam�b�S�da�logic�hold�in��M�@�.�First,�the�b�eta����axiom:�Q��Ap�(�x:���t;�r�S��)�����P��������԰�����=�����^��t�[�x���:=��r��].�Q�It�suces�to�consider�the�case�when��t��has�only�����x���free.�Supp�S�ose�that�the�left�hand�side�is�dened�in��M�@�.�Its�in��rterpretation�is�the����equiv��X�alence��class�of��Ap�(�x:���t;�r�S��).��By�axiom�(���O�),�the�righ��rt�side�is�pro�v��X�ably�equal�to����the��^left�side,�so�it�is�dened�in��M�@�,�and�its�in��rterpretation�is�the�class�of��t�[�x�UR�:=��r�S��].����On��6the�other�hand�if�the�righ��rt�hand�side�is�dened�in��M�@�,�then�it�is�pro�v��X�ably����equal�6�to�the�left�side�and�so�b�S�oth�are�dened�and�equal�in��M�@�.�This�v��reries�axiom����(���O�).����!���src:233LambdaLogicExtras.texNo��rw��for�axiom�(���s�).�Supp�S�ose��t��and��s��are�closed�terms�dened�in��M�@�,�and�����Ap�(�t;���x�)�����P��������԰�����=�����:��Ap�(�s;�x�)�s�is�v��X�alid�in��M�@�.�Then�for�eac��rh�closed�term��r��r�suc�h�that��T�����pro��rv�es��޿r�/�#�,�w��re�ha�v�e��tr�#l�pro�v��X�ably�equal�to��sr�S��.�Since��T�q��con�tains�innitely�man�y����constan��rt���sym�b�S�ols,�w�e�can�select�a�constan�t��c��that�do�S�es�not�o�ccur�in��t��or��s�,�so�����tc�UR�=��sc��Źis�pro��rv��X�able.�Replacing�the�constan�t��c��b�y�a�v��X�ariable�in�the�pro�S�of,��tx�UR�=��sx��Źis����pro��rv��X�able.�`�Hence�b�y�axiom�(���s�),��x:���t�UR�=��x:�s�`��is�probable,�and�hence�that�equation����holds��"in��M�@�.�In�v��rerifying�axiom�(���s�),�it�suces�to�consider�the�case�when��s��and��t�����are��closed�terms.�The�axiom�(����)�holds�in��M�)}�since�it�simply�asserts�the�equalit��ry����of�jpairs�of�pro��rv��X�ably�equal�terms.�The�axiom���T��"��6�=�UR�F�߹holds�since��T��do�S�es�not�pro��rv�e�����T�UR�=��F�,��b�S�ecause��T��n�is�consisten��rt.�That�completes�the�pro�of.��$���References��������1.���%��src:251LambdaLogicExtras.texBarendregt,�&�H.,��The�jHL��ffamb�da�Calculus:�Its�Syntax�and�Semantics�,�&�Studies�in����%�Logic��and�the�F��Voundations�of�Mathematics��103�,�Elsevier�Science�Ltd.�Revised�����F>������`�������Lam��!b�M�da��fLogic������������%��edition��(Octob�S�er�1984).�������2.���%��src:256LambdaLogicExtras.texBeeson,��M.,��F���oundations�cof�Constructive�Mathematics�,��Springer-V��Verlag,�����%�Berlin��Heidelb�S�erg�New�Y��Vork�(1985).������3.���%��src:258LambdaLogicExtras.texBeeson,�p�M.,�Pro��rving�programs�and�programming�pro�S�ofs,�in:�Barcan,�Mar-����%�cus,�~�Dorn,�and�W��Veingartner�(eds.),��L��ffo�gic,���Metho�dolo�gy,�and�Philosophy�of����%�Scienc��ffe�;�VII,�pr�o�c�e�e�dings�of�the�International�Congr�ess,�Salzbur�g,�1983�,�
�pp.����%�51-81,��North-Holland,�Amsterdam�(1986).������4.���%��src:261LambdaLogicExtras.texBeeson,��M.,�Lam��rb�S�da�Logic,�submitted�to�IJCAR2004������5.���%��src:263LambdaLogicExtras.texBeeson,��M.,�Otter�Tw��ro�System�Description,�submitted�to�IJCAR�2004.������6.���%��src:266LambdaLogicExtras.texSho�S�eneld,��CJ.�R.,��Mathematic��ffal���L�o�gic�,��CAddison-W��Vesley�,�Reading,�Mass.����%�(1967).�����Xy���;�����8���@cmti12�7��N�ffcmbx12�5K�`y
�3
cmr10�4��N�cmbx12�+�':

cmti10��K�cmsy8�!",�
cmsy10�;�cmmi6��2cmmi8���g�cmmi12�|{Ycmr8��-�
cmcsc10���N�G�cmbx12�X�Qcmr12�O!�cmsy7�
�b>

cmmi10�K�`y

cmr10�\������

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists