Sindbad~EG File Manager
����; � TeX output 2004.01.04:2254� ������� ���`� ��� �����b��d���src:11LambdaLogicExtras.tex���N� G� cmbx12�Supplemen��u�t�z�to�Lam�b� �=da�Logic��#�Ѝ� �4"��-�
cmcsc10�Michael���Beeson������2��K� cmsy8����� ��zYA�+� ':
cmti10�San���Jos�����$�e�State�University,�San�Jos� �!e,�CA,�USA��,� �� �3��src:31LambdaLogicExtras.tex�4��N� cmbx12�Abstract��
���4 �5K�`y
�3
cmr10�This�9do�M�cumen��!t�con�tains�some�explanations�and�pro�M�ofs�that�had�to�b�e��
����4 omitted��9from�(�4��y�)�to�meet�the�length�limitation.�It�is�mean��!t�to�b�M�e�read����4 only��fas�a�supplemen��!t�to�(�4��y�).������4 �src:33LambdaLogicExtras.texKEYW��!ORDS:���automated�deduction,�computer�pro�M�ofs,�unication,�second����4 order,��fOtter��R��#ҵ��� �7��N� ff cmbx12�1.��*�1Predicate�ffAbstraction��p獑 �src:36LambdaLogicExtras.tex�X�Q cmr12�Should�5{w��re�allo�w�the�formation�of�new�predicates�b�y����g� cmmi12��-abstraction,�suc�h�as��� �� �y�n9:���P��ƹ(�x;�y��)?��This�is�used�in�Otter2�(�5���).�It�is,�ho��rw�ev�er,��not�necessary�to�build���� this�w�in��rto�the�syn�tax�of�lam�b�S�da�logic.�Indeed,�omitting�it�oers�greater�
exibilit�y:���� w��re�O�can�then�selectiv�ely�allo�w�predicate�abstraction�o�v�er�certain�predicates,�while���� not���allo��rwing�it�o�v�er�others.�T��Vo�allo�w�predicate�abstraction�o�v�er��P��ƹ,�include�a�func-���� tion�I�sym��rb�S�ol��������2 cmmi8�P��[Z�and�an�axiom�expressing�that������P���is�the�c��rharacteristic�function���� of�P��ƹ.����� �5.��0�Pro�s3of�ffof�Theorem�5.3��p獑 �src:47LambdaLogicExtras.tex�W��Ve��rep�S�eat�the�statemen��rt�of�the�theorem�and�then�giv�e�a�complete�pro�S�of;�(�4���)���� giv��res��only�a�sk�etc�h.��%j���� �Theorem���5.3�(Axioma��32tiza�tion���of�first-order�theorems):���r�~�src:50LambdaLogicExtras.tex�8���@ cmti12�L��ffet�+E�T���b�e�a���� rst��or��ffder�the�ory,�and�let��A��b�e�a�rst�or�der�sentenc�e.�Then��T��|�pr�oves��A��in���� lamb��ffda�w{lo�gic�if�and�only�if�for�some�p�ositive�inte�ger��n�,��T�A�plus�\ther�e�exist��n���� �distinct�35things"�pr��ffoves��A��in�rst�or�der�lo�gic.���� �src:54LambdaLogicExtras.texPr��ffo�of�.�iRFirst�supp�S�ose��A��is�pro��rv��X�able�from��T��plus�\there�exist��n��distinct�things".���� W��Ve��Osho��rw��A��is�pro�v��X�able�in�lam�b�S�da�logic,�b�y�induction�on�the�length�of�the�pro�S�of���� of��X�A�.�Since�lam��rb�S�da�logic�includes�rst�order�logic,�the�induction�step�is�rivial.��7"�����#g��^��O!� cmsy7�����( �K�`y
cmr10�Researc���h�UUsupp�Gorted�b�y�NSF�gran�t�n�um�b�Ger�CCR-0204362.��� ��� *��� ���`� ��� ���Lam��!b�M�da��fLogic����� ����� �� �F��Vor�p%the�basis�case�w��re�m�ust�sho�w�that�lam�b�S�da�logic�pro�v�es�\there�exist��n��distinct��� �� things"���for�eac��rh�p�S�ositiv�e�in�teger��n�.�The�classical�constructions�of�n�umerals�in���� lam��rb�S�da��calculus�pro�duce�innitely�man��ry�distinct�things.�Ho�w�ev�er,�it�m�ust�b�S�e���� c��rhec�k�ed��that�their�distinctness�is�pro��rv��X�able�in�lam�b�S�da�logic.�Dening�n�umerals���� as�U�on�p.�130�of�(�1���)�w��re�v�erify�b�y�induction�on��n��that�for�all��m�^<�n�,�U��!",�
cmsy10�d�m�e�6�=��d�n�e���� �is�Knpro��rv��X�able�in�lam�b�S�da�logic.�If��m��<�n�쌹+�1�Knthen�either��m���=��n�,�Knin�whic�h�case�w�e���� are��-done�b��ry�the�induction�h�yp�S�othesis,�or��m��̹=��n�.��-So�what�has�to�b�e�pro��rv�ed��-is���� that��hfor�eac��rh��n�,�lam�b�S�da�logic�pro�v�es��d�n�e�UR6�=��d�n��K�+�1�e�.��hThis�in�turn�is�v�eriable�b�y���� induction��on��n�.����!���src:63LambdaLogicExtras.texCon��rv�ersely��V,���supp�S�ose�that��A��is�not�pro��rv��X�able�in��T�-��plus�\there�exist��n��distinct���� things"��Mfor�an��ry��n�.�Then�b�y�the�completeness�theorem�for�rst�order�logic,�there���� is��an�innite�mo�S�del��M���of��:�A�;�indeed�w��re�ma�y�assume�that��M���has�innitely���� man��ry�A�elemen�ts�not�denoted�b�y�closed�terms�of��T��ƹ.�W��Ve�will�sho�w�that��M����can���� b�S�e�
Hexpanded�to�a�lam��rb�da�mo�del����x��gi^������M����z�satisfying�the�same�rst�order�form��rulas,�b�y���� dening��warbitrarily�the�required�op�S�eration������2���u{�on��M�@�-terms,�and�then�inductiv��rely���� dening� �relations��E� ��(�x;���y�n9�)�and��Ap����M�����to�serv��re�as�the�in�terpretations�of�equalit�y���� and�Ap��in����x��D�^������M������.����!���src:70LambdaLogicExtras.texT��Vo�XLdo�this�w��re�dene�the�relation��Ap����M���<�and�a�binary�relation��E�c�on��M��0�b�y�sim�ul-���� taneous�1�induction.��Ap����M�����will�serv��re�as�the�in�terpretation�of��Ap��and��E�姹will�serv�e�as���� the�Hin��rterpretation�of�equalit�y��V.�����2�y���[h�Since��M�U,�is�innite�w�e�can�dene�an�elemen�t�0�and���� a�^�pairing�function��h�a;���b�i��on��M����in�suc��rh�a�w�a�y�that�the�in�terpretations�of�the�losed���� terms�)%of��T���are�nev��rer�pairs,�and�0�is�not�a�pair.�Dene��<�URa;���b;�c�>�=�<�a;�<�b;�c�>>�,���� etc.���Dene�the�successor�of��x��to�b�S�e��s�(�x�)�UR=�<��0�;���x�>�,���and�dene�the�\n��rumeral"���Ӏ����m������ �inductiv��rely�e�b�y���n������0���lJ=�&�0�and���n�Ŝ������m����+�1���',7=��s�(���3����m���
G�).�Henceforth�w��re�drop�the�bars,�writing���� for��example��h�1�;���k�g�i��instead�of��h���n�����1�����;����W��Qƹ��*����k������i�.�An�elemen��rt�of�the�form��<�aC�1�;�j��;�k��`>��will�b�S�e���� used��}as�an�\index"�of�the��k�g�-th�function�sym��rb�S�ol�of�arit�y��j�`P�in��T��ƹ,�whic�h�w�e�denote���� b��ry�f���O���G��j�� �k���� �.����!���src:83LambdaLogicExtras.texT��Vuples�\�are�dened�from�pairs�b��ry��h�x�����|{Y cmr8�1����;����:�:�:��ʜ;���x����n�+1�����i��O�=��hh�x���̽1���;����:�:�:��ʜ;���x����n���P�i�;�x����n�+1�����i�.�\�The���� �memb��ffers�bs�of�a�tuple��h�x���̽1����;����:�:�:��ʜ;���x����n��
ùare�the��x����i���M�for��i�UR�=�1�;��:�:�:��ʜ;�n�.�bsWhen��y�Ь�and��w���are�t��rw�o���� tuples�O�of�length�at�least��m��w��re�write��E����m��Ĺ(�y�n9;���w�R��)�for�the�conjunction�of�the�form�ulas���� �E� ��(�y����i��dڿ;���w����i���)��for��i�UR���m�.����!���src:88LambdaLogicExtras.texT��Vo��wpro�S�duce�a���-mo�del�w��re�m�ust�dene�an�op�S�eration������2�����,�whic�h�tak�es�a�v��X�ariable���� and���an��M�@�-term.�An��M��-term�(as�explained�in�(�1���),�p.�86��.�),�is�a�term�with���� \parameters��#from��M�@�";�more�precisely��V,�a�closed�term�in�a�language�con��rtaining�a���� constan��rt��ҿc����a��ӡ�for�eac�h�elemen�t��a��of��M�@�.�A���con�v�enien�t�notation�for��M�@�-terms�is��t�[�y�n9�],���� where��ʿy��is�a�tuple�of�elemen��rts�of��M�ڮ�whose�length�is�the�n�um�b�S�er�of�free�v��X�ariables���� of�T��t�.�This�means�the�follo��rwing:�if��x���̽1����;����:�:�:��ʜ;���x����n�� ��are�the�free�v��X�ariables�of��t�,�in�order���� of��"their�o�S�ccurrence,�then��t�[�y�n9�]�is��t�[�x����i���,�:=�UR�c����y��8:�;� cmmi6�i�����].�W��Ve�also�need�the�follo��rwing�notation:���� �t�[�y�n9;���x�]�3�where��x��is�a�v��X�ariable,�and��y����is�a�tuple�of�elemen��rts�of��M�t��whose�length�is�the���� n��rum�b�S�er��of�free�v��X�ariables�of��t��dieren��rt�from��x�,�means�the�follo�wing:�if��x���̽1����;����:�:�:��ʜ;���x����n���UT�����#�X��^��y����( �If��Ione�insists�on�in���terpreting�equalit�y�as�iden�tit�y�instead�of�b�y�an�equiv��q�alence�relation,�one�� �� ma���y�UUuse�the�equiv��q�alence�classes�of��
�b>