Sindbad~EG File Manager
����; � TeX output 2005.09.27:1615� �����o#f����ܚ�5#f����ܚ��v�!�src:22ImplicitTyping.tex���N� ff cmbx12�Implicit�ffT���yping�in�Lam�b�s3da�Logic��"�%�� �x��K�`y
cmr10�Mic���hael�UUBeeson���^��ٓ�R cmr7�1����i�� ��%�o��� cmr9�San�TJos������Xe�State�Univ��9ersit�y��:�,�TSan�Jos����Xe,�Calif.�� �� ����ߤN cmtt9�beeson@cs.sjsu.edu,���� ��www.cs.sjsu.edu/faculty/beeson��&{ҍ���[s��t�: cmbx9�Abstract.��� �&��src:25ImplicitTyping.tex�Otter-lam��9b�A�da��,is�a�theorem-pro�v�er�based�on�an�un�t�yp�A�ed�logic����[s�with�+lam��9b�A�da�calculus,�called�Lam�b�A�da�Logic.�Otter-lam�b�A�da�is�built�on����[s�Otter,��=so�it�uses�resolution�pro�A�of�searc��9h,�supplemen�ted�b�y�demo�A�dulation����[s�and��paramo�A�dulation�for�equalit��9y�reasoning,�but�it�also�uses�a�new�al-����[s�gorithm,�cSlam��9b�A�da�unication,�for�instan�tiating�v��|rariables�for�functions�or����[s�predicates.�>&The�basic�idea�of�a�t��9yp�A�ed�in�terpretation�of�a�pro�A�of�is�to�\t�yp�A�e"����[s�the��&function�and�predicate�sym��9b�A�ols�b�y�sp�A�ecifying�the�legal�t�yp�A�es�of�their����[s�argumen��9ts�ּand�return�v��|ralues.�The�idea�of�\implicit�t�yping"�is�that�if�the����[s�axioms���can�b�A�e�t��9yp�ed�in�this�w��9a�y���then�the�consequences�should�b�e�t��9y-����[s�pable�H'to�A�o.�This�is�not�true�in�general�if�unrestricted�lam��9b�da�unication����[s�is�kallo��9w�ed,�but�for�a�restricted�form�of�\t�yp�A�e-safe"�lam�b�A�da�unication�it����[s�is���true.�The�main�theorem�of�the�pap�A�er�sho��9ws�that�the�abilit�y�to�t�yp�A�e����[s�pro�A�ofs�yif�the�axioms�can�b�e�t��9yp�ed�w��9orks�for�the�rules�of�inference�used����[s�b��9y�. Otter-lam�b�A�da,�if�t�yp�A�e-safe�lam�b�A�da�unication�is�used,�and�if�demo�d-����[s�ulation�}�and�paramo�A�dulation�from�or�in��9to�v��|rariables�are�not�allo�w�ed.�All����[s�the�B�in��9teresting�pro�A�ofs�obtained�with�Otter-lam�b�A�da,�except�those�explic-����[s�itly��Bin��9v�olving�un�t�ypable�constructions�suc�h�as�xed-p�A�oin�ts,�are�co�v�ered����[s�b��9y�Tthis�theorem.�� �j���? ���N� cmbx12�1��S@ In�� tro�` duction:�� the�no-nilp�oten�� ts�example�����? �src:29ImplicitTyping.tex�W��*�e���b�Gegin�with�an�example.�Consider�the�problem�of�pro���ving�that�there�are�no�� ��? nilp�Goten���t�Celemen�ts�in�an�in�tegral�domain.�T��*�o�explain�the�problem:�an�in�tegral����? domain�
7is�a�ring��
�b>