Sindbad~EG File Manager
����; � TeX output 2006.03.06:0943� �����o#f����ܚ�5#f����ܚ��IH�#src:24ImplicitAndExplicitTyping.tex���N� ff cmbx12�Implicit�ffand�Explicit�T���yping�in�Lam�b�s3da�Logic��"�%�� �,>�K�`y
cmr10�Mic���hael�UUBeeson���^��ٓ�R cmr7�1����|s��^�� 0e�r cmmi7�?�����i�� ��%�o��� cmr9�San�TJos������Xe�State�Univ��9ersit�y��:�,�TSan�Jos����Xe,�Calif.�� �� ����ߤN cmtt9�beeson@cs.sjsu.edu,���� ��www.cs.sjsu.edu/faculty/beeson��'���[s��t�: cmbx9�Abstract.��� �&��#src:27ImplicitAndExplicitTyping.tex�Otter-lam��9b�A�da��,is�a�theorem-pro�v�er�based�on�an�un�t�yp�A�ed�logic����[s�with��lam��9b�A�da�calculus,�called�lam�b�A�da�logic.�Otter-lam�b�A�da�is�built�on�Ot-����[s�ter,�.Eso�it�uses�resolution�pro�A�of�searc��9h,�supplemen�ted�b�y�demo�A�dulation�and����[s�paramo�A�dulation��for�equalit��9y�reasoning,�but�it�also�uses�a�new�algorithm,����[s�lam��9b�A�da��unication,�to�instan�tiate�v��|rariables�for�functions�or�predicates.����[s�The�)Pidea�of�\implicit�t��9yping"�is�to�\t�yp�A�e"�the�function�and�predicate�sym-����[s�b�A�ols�E�b��9y�sp�ecifying�the�legal�t��9yp�es�of�their�argumen��9ts�and�return�v��|ralues.����[s�The���hop�A�e�is�that�if�the�axioms�can�b�e�t��9yp�ed�in�this�w��9a�y���then�the�con-����[s�sequences�\�should�b�A�e�t��9yp�eable�to�o.�This�is�true�(with�one�restriction)�in����[s�rst-order�~`logic.�W��:�e�sho��9w�that�b�y�placing�suitable�restrictions�on�lam�b�A�da����[s�unication,�Qrone�can�extend�this�theorem�to�lam��9b�A�da�logic.�All�the�in�ter-����[s�esting�pro�A�ofs�obtained�so�far�with�Otter-lam��9b�da,�except�those�explicitly����[s�in��9v�olving��un�t�yp�A�eable�axioms,�are�co�v�ered�b�y�this�theorem.�\Explicit�t�yp-����[s�ing"�trefers�to�the�use�of�simple�t��9yp�A�e-c�hec�king�tin�addition�to�implicit����[s�t��9yping.��!x����? ���N� cmbx12�1��S@ In�� tro�` duction���1��? �#src:31ImplicitAndExplicitTyping.tex�Lam���b�Gda��xlogic�is�an�un�t�yp�Ged�system,�and�lam�b�Gda�unication�is�an�un�t�yp�Ged�uni-�� ��? cation�Salgorithm.�Lam���b�Gda�logic�is�a�consisten�t�system�with�a�completeness�the-����? orem�4�[1],�but�the�exact�relationships�b�Get���w�een�4�lam�b�da�4�logic�and�rst�order�logic,����? and�*Zb�Get���w�een�lam�b�Gda�logic�and�t�yp�Ged�logics,�ha�v�e�still�not�b�Geen�w�ork�ed�out,�and����? some��ypro�Gofs�in�lam���b�da�logic�seem�at�rst�glance�surprisingly�close�to�inconsis-����? tency��*�.�yOn�the�other�hand,�Otter-�
�b>